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Preface to the Second Edition

The twenty years since the publication of the first edition of this book have seen tremendous
progress in artificial intelligence, propelled in large part by advances in machine learning,
including advances in reinforcement learning. Although the impressive computational
power that became available is responsible for some of these advances, new developments
in theory and algorithms have been driving forces as well. In the face of this progress, a
second edition of our 1998 book was long overdue, and we finally began the project in
2012. Our goal for the second edition was the same as our goal for the first: to provide a
clear and simple account of the key ideas and algorithms of reinforcement learning that
is accessible to readers in all the related disciplines. The edition remains an introduction,
and we retain a focus on core, online learning algorithms. This edition includes some new
topics that rose to importance over the intervening years, and we expanded coverage of
topics that we now understand better. But we made no attempt to provide comprehensive
coverage of the field, which has exploded in many different directions. We apologize for
having to leave out all but a handful of these contributions.

As in the first edition, we chose not to produce a rigorous formal treatment of
reinforcement learning, or to formulate it in the most general terms. However, our deeper
understanding of some topics since the first edition required a bit more mathematics
to explain; we have set off the more mathematical parts in shaded boxes that the non-
mathematically-inclined may choose to skip. We also use a slightly different notation
than was used in the first edition. In teaching, we have found that the new notation
helps to address some common points of confusion. It emphasizes the difference between
random variables, denoted with capital letters, and their instantiations, denoted in lower
case. For example, the state, action, and reward at time step ¢ are denoted S;, A,
and Ry, while their possible values might be denoted s, a, and r. Along with this, it is
natural to use lower case for value functions (e.g., v, ) and restrict capitals to their tabular
estimates (e.g., Q:(s,a)). Approximate value functions are deterministic functions of
random parameters and are thus also in lower case (e.g., 0(s,w:) = v.(s)). Vectors, such
as the weight vector wy (formerly 6;) and the feature vector x; (formerly ¢;), are bold
and written in lowercase even if they are random variables. Uppercase bold is reserved for
matrices. In the first edition we used special notations, P5,, and R%,,, for the transition
probabilities and expected rewards. One weakness of that notation is that it still did not
fully characterize the dynamics of the rewards, giving only their expectations, which is
sufficient for dynamic programming but not for reinforcement learning. Another weakness

xiii



1Y Preface to the Second Edition

is the excess of subscripts and superscripts. In this edition we use the explicit notation of
p(s’,r|s,a) for the joint probability for the next state and reward given the current state
and action. All the changes in notation are summarized in a table on page xix.

The second edition is significantly expanded, and its top-level organization has been
changed. After the introductory first chapter, the second edition is divided into three new
parts. The first part (Chapters 2-8) treats as much of reinforcement learning as possible
without going beyond the tabular case for which exact solutions can be found. We cover
both learning and planning methods for the tabular case, as well as their unification
in n-step methods and in Dyna. Many algorithms presented in this part are new to
the second edition, including UCB, Expected Sarsa, Double learning, tree-backup, Q(c),
RTDP, and MCTS. Doing the tabular case first, and thoroughly, enables core ideas to be
developed in the simplest possible setting. The second part of the book (Chapters 9-13)
is then devoted to extending the ideas to function approximation. It has new sections on
artificial neural networks, the fourier basis, LSTD, kernel-based methods, Gradient-TD
and Emphatic-TD methods, average-reward methods, true online TD()), and policy-
gradient methods. The second edition significantly expands the treatment of off-policy
learning, first for the tabular case in Chapters 5-7, then with function approximation in
Chapters 11 and 12. Another change is that the second edition separates the forward-view
idea of n-step bootstrapping (now treated more fully in Chapter 7) from the backward-
view idea of eligibility traces (now treated independently in Chapter 12). The third part
of the book has large new chapters on reinforcement learning’s relationships to psychology
(Chapter 14) and neuroscience (Chapter 15), as well as an updated case-studies chapter
including Atari game playing, Watson’s wagering strategy, and the Go playing programs
AlphaGo and AlphaGo Zero (Chapter 16). Still, out of necessity we have included only a
small subset of all that has been done in the field. Our choices reflect our long-standing
interests in inexpensive model-free methods that should scale well to large applications.
The final chapter now includes a discussion of the future societal impacts of reinforcement
learning. For better or worse, the second edition is about twice as large as the first.

This book is designed to be used as the primary text for a one- or two-semester
course on reinforcement learning. For a one-semester course, the first ten chapters should
be covered in order and form a good core, to which can be added material from the
other chapters, from other books such as Bertsekas and Tsitsiklis (1996), Wiering and
van Otterlo (2012), and Szepesvari (2010), or from the literature, according to taste.
Depending of the students’ background, some additional material on online supervised
learning may be helpful. The ideas of options and option models are a natural addition
(Sutton, Precup and Singh, 1999). A two-semester course can cover all the chapters as
well as supplementary material. The book can also be used as part of broader courses
on machine learning, artificial intelligence, or neural networks. In this case, it may be
desirable to cover only a subset of the material. We recommend covering Chapter 1 for a
brief overview, Chapter 2 through Section 2.4, Chapter 3, and then selecting sections
from the remaining chapters according to time and interests. Chapter 6 is the most
important for the subject and for the rest of the book. A course focusing on machine
learning or neural networks should cover Chapters 9 and 10, and a course focusing on
artificial intelligence or planning should cover Chapter 8. Throughout the book, sections
and chapters that are more difficult and not essential to the rest of the book are marked
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with a . These can be omitted on first reading without creating problems later on. Some
exercises are also marked with a * to indicate that they are more advanced and not
essential to understanding the basic material of the chapter.

Most chapters end with a section entitled “Bibliographical and Historical Remarks,”
wherein we credit the sources of the ideas presented in that chapter, provide pointers to
further reading and ongoing research, and describe relevant historical background. Despite
our attempts to make these sections authoritative and complete, we have undoubtedly left
out some important prior work. For that we again apologize, and we welcome corrections
and extensions for incorporation into the electronic version of the book.

Like the first edition, this edition of the book is dedicated to the memory of A. Harry
Klopf. It was Harry who introduced us to each other, and it was his ideas about the brain
and artificial intelligence that launched our long excursion into reinforcement learning.
Trained in neurophysiology and long interested in machine intelligence, Harry was a
senior scientist affiliated with the Avionics Directorate of the Air Force Office of Scientific
Research (AFOSR) at Wright-Patterson Air Force Base, Ohio. He was dissatisfied with
the great importance attributed to equilibrium-seeking processes, including homeostasis
and error-correcting pattern classification methods, in explaining natural intelligence
and in providing a basis for machine intelligence. He noted that systems that try to
maximize something (whatever that might be) are qualitatively different from equilibrium-
seeking systems, and he argued that maximizing systems hold the key to understanding
important aspects of natural intelligence and for building artificial intelligences. Harry was
instrumental in obtaining funding from AFOSR for a project to assess the scientific merit
of these and related ideas. This project was conducted in the late 1970s at the University
of Massachusetts Amherst (UMass Amherst), initially under the direction of Michael
Arbib, William Kilmer, and Nico Spinelli, professors in the Department of Computer
and Information Science at UMass Ambherst, and founding members of the Cybernetics
Center for Systems Neuroscience at the University, a farsighted group focusing on the
intersection of neuroscience and artificial intelligence. Barto, a recent Ph.D. from the
University of Michigan, was hired as post doctoral researcher on the project. Meanwhile,
Sutton, an undergraduate studying computer science and psychology at Stanford, had
been corresponding with Harry regarding their mutual interest in the role of stimulus
timing in classical conditioning. Harry suggested to the UMass group that Sutton would
be a great addition to the project. Thus, Sutton became a UMass graduate student,
whose Ph.D. was directed by Barto, who had become an Associate Professor. The study
of reinforcement learning as presented in this book is rightfully an outcome of that
project instigated by Harry and inspired by his ideas. Further, Harry was responsible
for bringing us, the authors, together in what has been a long and enjoyable interaction.
By dedicating this book to Harry we honor his essential contributions, not only to the
field of reinforcement learning, but also to our collaboration. We also thank Professors
Arbib, Kilmer, and Spinelli for the opportunity they provided to us to begin exploring
these ideas. Finally, we thank AFOSR for generous support over the early years of our
research, and the NSF for its generous support over many of the following years.

We have very many people to thank for their inspiration and help with this second
edition. Everyone we acknowledged for their inspiration and help with the first edition
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deserve our deepest gratitude for this edition as well, which would not exist were it not
for their contributions to edition number one. To that long list we must add many others
who contributed specifically to the second edition. Our students over the many years that
we have taught this material contributed in countless ways: exposing errors, offering fixes,
and—not the least—being confused in places where we could have explained things better.
We especially thank Martha Steenstrup for reading and providing detailed comments
throughout. The chapters on psychology and neuroscience could not have been written
without the help of many experts in those fields. We thank John Moore for his patient
tutoring over many many years on animal learning experiments, theory, and neuroscience,
and for his careful reading of multiple drafts of Chapters 14 and 15. We also thank Matt
Botvinick, Nathaniel Daw, Peter Dayan, and Yael Niv for their penetrating comments on
drafts of these chapter, their essential guidance through the massive literature, and their
interception of many of our errors in early drafts. Of course, the remaining errors in these
chapters—and there must still be some—are totally our own. We thank Phil Thomas for
helping us make these chapters accessible to non-psychologists and non-neuroscientists,
and we thank Peter Sterling for helping us improve the exposition. We are grateful to Jim
Houk for introducing us to the subject of information processing in the basal ganglia and
for alerting us to other relevant aspects of neuroscience. José Martinez, Terry Sejnowski,
David Silver, Gerry Tesauro, Georgios Theocharous, and Phil Thomas generously helped
us understand details of their reinforcement learning applications for inclusion in the
case-studies chapter, and they provided helpful comments on drafts of these sections.
Special thanks are owed to David Silver for helping us better understand Monte Carlo
Tree Search and the DeepMind Go-playing programs. We thank George Konidaris for his
help with the section on the Fourier basis. Emilio Cartoni, Thomas Cederborg, Stefan
Dernbach, Clemens Rosenbaum, Patrick Taylor, Thomas Colin, and Pierre-Luc Bacon
helped us in a number important ways for which we are most grateful.

Sutton would also like to thank the members of the Reinforcement Learning and
Artificial Intelligence laboratory at the University of Alberta for contributions to the
second edition. He owes a particular debt to Rupam Mahmood for essential contributions
to the treatment of off-policy Monte Carlo methods in Chapter 5, to Hamid Maei for
helping develop the perspective on off-policy learning presented in Chapter 11, to Eric
Graves for conducting the experiments in Chapter 13, to Shangtong Zhang for replicating
and thus verifying almost all the experimental results, to Kris De Asis for improving
the new technical content of Chapters 7 and 12, and to Harm van Seijen for insights
that led to the separation of n-step methods from eligibility traces and (along with Hado
van Hasselt) for the ideas involving exact equivalence of forward and backward views of
eligibility traces presented in Chapter 12. Sutton also gratefully acknowledges the support
and freedom he was granted by the Government of Alberta and the National Science and
Engineering Research Council of Canada throughout the period during which the second
edition was conceived and written. In particular, he would like to thank Randy Goebel
for creating a supportive and far-sighted environment for research in Alberta. He would
also like to thank DeepMind their support in the last six months of writing the book.

Finally, we owe thanks to the many careful readers of drafts of the second edition that
we posted on the internet. They found many errors that we had missed and alerted us to
potential points of confusion.
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We first came to focus on what is now known as reinforcement learning in late 1979. We
were both at the University of Massachusetts, working on one of the earliest projects to
revive the idea that networks of neuronlike adaptive elements might prove to be a promising
approach to artificial adaptive intelligence. The project explored the “heterostatic theory
of adaptive systems” developed by A. Harry Klopf. Harry’s work was a rich source of
ideas, and we were permitted to explore them critically and compare them with the long
history of prior work in adaptive systems. Our task became one of teasing the ideas apart
and understanding their relationships and relative importance. This continues today,
but in 1979 we came to realize that perhaps the simplest of the ideas, which had long
been taken for granted, had received surprisingly little attention from a computational
perspective. This was simply the idea of a learning system that wants something, that
adapts its behavior in order to maximize a special signal from its environment. This
was the idea of a “hedonistic” learning system, or, as we would say now, the idea of
reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly explored
in the early days of cybernetics and artificial intelligence. On closer inspection, though,
we found that it had been explored only slightly. While reinforcement learning had clearly
motivated some of the earliest computational studies of learning, most of these researchers
had gone on to other things, such as pattern classification, supervised learning, and
adaptive control, or they had abandoned the study of learning altogether. As a result, the
special issues involved in learning how to get something from the environment received
relatively little attention. In retrospect, focusing on this idea was the critical step that
set this branch of research in motion. Little progress could be made in the computational
study of reinforcement learning until it was recognized that such a fundamental idea had
not yet been thoroughly explored.

The field has come a long way since then, evolving and maturing in several directions.
Reinforcement learning has gradually become one of the most active research areas in ma-
chine learning, artificial intelligence, and neural network research. The field has developed
strong mathematical foundations and impressive applications. The computational study
of reinforcement learning is now a large field, with hundreds of active researchers around
the world in diverse disciplines such as psychology, control theory, artificial intelligence,
and neuroscience. Particularly important have been the contributions establishing and
developing the relationships to the theory of optimal control and dynamic programming.

xvii
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The overall problem of learning from interaction to achieve goals is still far from being
solved, but our understanding of it has improved significantly. We can now place compo-
nent ideas, such as temporal-difference learning, dynamic programming, and function
approximation, within a coherent perspective with respect to the overall problem.

Our goal in writing this book was to provide a clear and simple account of the key
ideas and algorithms of reinforcement learning. We wanted our treatment to be accessible
to readers in all of the related disciplines, but we could not cover all of these perspectives
in detail. For the most part, our treatment takes the point of view of artificial intelligence
and engineering. Coverage of connections to other fields we leave to others or to another
time. We also chose not to produce a rigorous formal treatment of reinforcement learning.
We did not reach for the highest possible level of mathematical abstraction and did not
rely on a theorem—proof format. We tried to choose a level of mathematical detail that
points the mathematically inclined in the right directions without distracting from the
simplicity and potential generality of the underlying ideas.
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Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for
the values of random variables and for scalar functions. Quantities that are required to
be real-valued vectors are written in bold and in lower case (even if random variables).
Matrices are bold capitals.

= equality relationship that is true by definition

= approximately equal

x proportional to

Pr{X =z}  probability that a random variable X takes on the value z
X~p random variable X selected from distribution p(z) = Pr{X =x}
E[X] expectation of a random variable X, i.e., E[X] =} p(z)x
argmax, f(a) a value of a at which f(a) takes its maximal value

Inz natural logarithm of x

e’ the base of the natural logarithm, e ~ 2.71828, carried to power z; e™* = z

R set of real numbers

f:X—=Y function f from elements of set X to elements of set Y

— assignment

(a,b] the real interval between a and b including b but not including a
€ probability of taking a random action in an e-greedy policy

a, B step-size parameters

¥ discount-rate parameter

A decay-rate parameter for eligibility traces

Lpredicate indicator function (Lpregicate = 1 if the predicate is true, else 0)

In a multi-arm bandit problem:

k number of actions (arms)

t discrete time step or play number

gs(a) true value (expected reward) of action a

Q+(a) estimate at time ¢ of g.(a)

Ni(a) number of times action a has been selected up prior to time ¢
H(a) learned preference for selecting action a at time ¢

m(a probability of selecting action a at time ¢

R, estimate at time t of the expected reward given

Xix
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Summary of Notation

In a Markov Decision Process:

s, s
a

r

)

g+
A(s)
R

C

S

S|

states

an action

a reward

set of all nonterminal states

set of all states, including the terminal state
set of all actions available in state s

set of all possible rewards, a finite subset of R
subset of; e.g., R C R

is an element of; e.g., s € §, r € R

number of elements in set §

discrete time step

final time step of an episode, or of the episode including time step ¢
action at time ¢

state at time ¢, typically due, stochastically, to S;_; and A;_1
reward at time ¢, typically due, stochastically, to S;_; and A;_;
policy (decision-making rule)

action taken in state s under deterministic policy m

probability of taking action a in state s under stochastic policy 7

return following time ¢

horizon, the time step one looks up to in a forward view

n-step return from ¢ 4+ 1 to ¢ + n, or to h (discounted and corrected)
flat return (undiscounted and uncorrected) from ¢t + 1 to h (Section 5.8)
A-return (Section 12.1)

truncated, corrected A-return (Section 12.3)

A-return, corrected by estimated state, or action, values (Section 12.8)

probability of transition to state s’ with reward r, from state s and action a
probability of transition to state s’, from state s taking action a

expected immediate reward from state s after action a

expected immediate reward on transition from s to s’ under action a

value of state s under policy = (expected return)

value of state s under the optimal policy

value of taking action a in state s under policy m

value of taking action a in state s under the optimal policy

array estimates of state-value function v, or v,

array estimates of action-value function g, or g,

expected approximate action value, e.g., Vi(s) =Y, m(a|s)Q:(s, a)
target for estimate at time ¢
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temporal-difference (TD) error at ¢ (a random variable) (Section 6.1)
state- and action-specific forms of the TD error (Section 12.9)
in n-step methods, n is the number of steps of bootstrapping

dimensionality—the number of components of w

alternate dimensionality—the number of components of 6
d-vector of weights underlying an approximate value function

ith component of learnable weight vector

approximate value of state s given weight vector w

alternate notation for o(s,w)

approximate value of state—action pair s, a given weight vector w
column vector of partial derivatives of v(s,w) with respect to w
column vector of partial derivatives of §(s,a, w) with respect to w

vector of features visible when in state s

vector of features visible when in state s taking action a
ith component of vector x(s) or x(s,a)

shorthand for x(S;) or x(S¢, At)

inner product of vectors, w ' x = Do Wik e.g., U(s,w) =W
secondary d-vector of weights, used to learn w (Chapter 11)
d-vector of eligibility traces at time ¢ (Chapter 12)

Tx(s)

parameter vector of target policy (Chapter 13)

probability of taking action a in state s given parameter vector 6
policy corresponding to parameter 6

column vector of partial derivatives of w(als, @) with respect to 0
performance measure for the policy mg

column vector of partial derivatives of J(@) with respect to 0
preference for selecting action a in state s based on 0

behavior policy used to select actions while learning about target policy 7
a baseline function b : § — R for policy-gradient methods

branching factor for an MDP or search tree

importance sampling ratio for time ¢ through time h (Section 5.5)
importance sampling ratio for time ¢ alone, p; = py.¢

average reward (reward rate) for policy 7 (Section 10.3)

estimate of r(m) at time ¢

on-policy distribution over states (Section 9.2)

|8]-vector of the pu(s) for all s € 8

p-weighted squared norm of value function v, i.e., ||U||i =3 s u(s)u(s)?
expected number of visits to state s per episode (page 199)

projection operator for value functions (page 268)

Bellman operator for value functions (Section 11.4)
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d X d matrix A = E[xt (xt — 'yxtH)T]

d-dimensional vector b = E[R;;1X¢]

TD fixed point wrp = A~'b (a d-vector, Section 9.4)
identity matrix

|8] x |8| matrix of state-transition probabilities under =
IS] x |8| diagonal matrix with g on its diagonal

|S8] x d matrix with the x(s) as its rows

Bellman error (expected TD error) for vy at state s (Section 11.4)
Bellman error vector, with components dy ($)
mean square value error VE(w) = |jvy, — vﬂ||i (Section 9.2)

mean square Bellman error BE(w) = ngHi
mean square projected Bellman error PBE(w) = HHSWHi

mean square temporal-difference error TDE(w) = Ey[p;07] (Section 11.5)
mean square return error (Section 11.6)



Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the first to occur
to us when we think about the nature of learning. When an infant plays, waves its arms,
or looks about, it has no explicit teacher, but it does have a direct sensorimotor connection
to its environment. Exercising this connection produces a wealth of information about
cause and effect, about the consequences of actions, and about what to do in order to
achieve goals. Throughout our lives, such interactions are undoubtedly a major source
of knowledge about our environment and ourselves. Whether we are learning to drive
a car or to hold a conversation, we are acutely aware of how our environment responds
to what we do, and we seek to influence what happens through our behavior. Learning
from interaction is a foundational idea underlying nearly all theories of learning and
intelligence.

In this book we explore a computational approach to learning from interaction. Rather
than directly theorizing about how people or animals learn, we primarily explore idealized
learning situations and evaluate the effectiveness of various learning methods.! That
is, we adopt the perspective of an artificial intelligence researcher or engineer. We
explore designs for machines that are effective in solving learning problems of scientific or
economic interest, evaluating the designs through mathematical analysis or computational
experiments. The approach we explore, called reinforcement learning, is much more
focused on goal-directed learning from interaction than are other approaches to machine
learning.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal. The learner is not told which actions to
take, but instead must discover which actions yield the most reward by trying them. In
the most interesting and challenging cases, actions may affect not only the immediate

1The relationships to psychology and neuroscience are summarized in Chapters 14 and 15.
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2 Chapter 1: Introduction

reward but also the next situation and, through that, all subsequent rewards. These two
characteristics—trial-and-error search and delayed reward—are the two most important
distinguishing features of reinforcement learning.

Reinforcement learning, like many topics whose names end with “ing,” such as machine
learning and mountaineering, is simultaneously a problem, a class of solution methods
that work well on the problem, and the field that studies this problem and its solution
methods. It is convenient to use a single name for all three things, but at the same time
essential to keep the three conceptually separate. In particular, the distinction between
problems and solution methods is very important in reinforcement learning; failing to
make this distinction is the source of many confusions.

We formalize the problem of reinforcement learning using ideas from dynamical sys-
tems theory, specifically, as the optimal control of incompletely-known Markov decision
processes. The details of this formalization must wait until Chapter 3, but the basic idea
is simply to capture the most important aspects of the real problem facing a learning
agent interacting over time with its environment to achieve a goal. A learning agent
must be able to sense the state of its environment to some extent and must be able to
take actions that affect the state. The agent also must have a goal or goals relating to
the state of the environment. Markov decision processes are intended to include just
these three aspects—sensation, action, and goal—in their simplest possible forms without
trivializing any of them. Any method that is well suited to solving such problems we
consider to be a reinforcement learning method.

Reinforcement learning is different from supervised learning, the kind of learning studied
in most current research in the field of machine learning. Supervised learning is learning
from a training set of labeled examples provided by a knowledgable external supervisor.
Each example is a description of a situation together with a specification—the label—of
the correct action the system should take to that situation, which is often to identify a
category to which the situation belongs. The object of this kind of learning is for the
system to extrapolate, or generalize, its responses so that it acts correctly in situations
not present in the training set. This is an important kind of learning, but alone it is not
adequate for learning from interaction. In interactive problems it is often impractical to
obtain examples of desired behavior that are both correct and representative of all the
situations in which the agent has to act. In uncharted territory—where one would expect
learning to be most beneficial—an agent must be able to learn from its own experience.

Reinforcement learning is also different from what machine learning researchers call
unsupervised learning, which is typically about finding structure hidden in collections of
unlabeled data. The terms supervised learning and unsupervised learning would seem
to exhaustively classify machine learning paradigms, but they do not. Although one
might be tempted to think of reinforcement learning as a kind of unsupervised learning
because it does not rely on examples of correct behavior, reinforcement learning is trying
to maximize a reward signal instead of trying to find hidden structure. Uncovering
structure in an agent’s experience can certainly be useful in reinforcement learning, but by
itself does not address the reinforcement learning problem of maximizing a reward signal.
We therefore consider reinforcement learning to be a third machine learning paradigm,
alongside supervised learning and unsupervised learning and perhaps other paradigms.
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One of the challenges that arise in reinforcement learning, and not in other kinds
of learning, is the trade-off between exploration and exploitation. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past
and found to be effective in producing reward. But to discover such actions, it has to
try actions that it has not selected before. The agent has to exploit what it has already
experienced in order to obtain reward, but it also has to explore in order to make better
action selections in the future. The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best. On a stochastic task, each
action must be tried many times to gain a reliable estimate of its expected reward. The
exploration—exploitation dilemma has been intensively studied by mathematicians for
many decades, yet remains unresolved. For now, we simply note that the entire issue of
balancing exploration and exploitation does not even arise in supervised and unsupervised
learning, at least in the purest forms of these paradigms.

Another key feature of reinforcement learning is that it explicitly considers the whole
problem of a goal-directed agent interacting with an uncertain environment. This is in
contrast to many approaches that consider subproblems without addressing how they
might fit into a larger picture. For example, we have mentioned that much of machine
learning research is concerned with supervised learning without explicitly specifying how
such an ability would finally be useful. Other researchers have developed theories of
planning with general goals, but without considering planning’s role in real-time decision
making, or the question of where the predictive models necessary for planning would
come from. Although these approaches have yielded many useful results, their focus on
isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete, interactive,
goal-seeking agent. All reinforcement learning agents have explicit goals, can sense
aspects of their environments, and can choose actions to influence their environments.
Moreover, it is usually assumed from the beginning that the agent has to operate despite
significant uncertainty about the environment it faces. When reinforcement learning
involves planning, it has to address the interplay between planning and real-time action
selection, as well as the question of how environment models are acquired and improved.
When reinforcement learning involves supervised learning, it does so for specific reasons
that determine which capabilities are critical and which are not. For learning research to
make progress, important subproblems have to be isolated and studied, but they should
be subproblems that play clear roles in complete, interactive, goal-seeking agents, even if
all the details of the complete agent cannot yet be filled in.

By a complete, interactive, goal-seeking agent we do not always mean something like
a complete organism or robot. These are clearly examples, but a complete, interactive,
goal-seeking agent can also be a component of a larger behaving system. In this case,
the agent directly interacts with the rest of the larger system and indirectly interacts
with the larger system’s environment. A simple example is an agent that monitors the
charge level of robot’s battery and sends commands to the robot’s control architecture.
This agent’s environment is the rest of the robot together with the robot’s environment.
One must look beyond the most obvious examples of agents and their environments to
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appreciate the generality of the reinforcement learning framework.

One of the most exciting aspects of modern reinforcement learning is its substantive
and fruitful interactions with other engineering and scientific disciplines. Reinforcement
learning is part of a decades-long trend within artificial intelligence and machine learning
toward greater integration with statistics, optimization, and other mathematical subjects.
For example, the ability of some reinforcement learning methods to learn with parameter-
ized approximators addresses the classical “curse of dimensionality” in operations research
and control theory. More distinctively, reinforcement learning has also interacted strongly
with psychology and neuroscience, with substantial benefits going both ways. Of all the
forms of machine learning, reinforcement learning is the closest to the kind of learning
that humans and other animals do, and many of the core algorithms of reinforcement
learning were originally inspired by biological learning systems. Reinforcement learning
has also given back, both through a psychological model of animal learning that better
matches some of the empirical data, and through an influential model of parts of the
brain’s reward system. The body of this book develops the ideas of reinforcement learning
that pertain to engineering and artificial intelligence, with connections to psychology and
neuroscience summarized in Chapters 14 and 15.

Finally, reinforcement learning is also part of a larger trend in artificial intelligence
back toward simple general principles. Since the late 1960’s, many artificial intelligence
researchers presumed that there are no general principles to be discovered, that intelligence
is instead due to the possession of a vast number of special purpose tricks, procedures,
and heuristics. It was sometimes said that if we could just get enough relevant facts into a
machine, say one million, or one billion, then it would become intelligent. Methods based
on general principles, such as search or learning, were characterized as “weak methods,”
whereas those based on specific knowledge were called “strong methods.” This view is
still common today, but not dominant. From our point of view, it was simply premature:
too little effort had been put into the search for general principles to conclude that there
were none. Modern artificial intelligence now includes much research looking for general
principles of learning, search, and decision making. It is not clear how far back the
pendulum will swing, but reinforcement learning research is certainly part of the swing
back toward simpler and fewer general principles of artificial intelligence.

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples
and possible applications that have guided its development.

e A master chess player makes a move. The choice is informed both by planning—
anticipating possible replies and counterreplies—and by immediate, intuitive judg-
ments of the desirability of particular positions and moves.

e An adaptive controller adjusts parameters of a petroleum refinery’s operation in
real time. The controller optimizes the yield/cost/quality trade-off on the basis
of specified marginal costs without sticking strictly to the set points originally
suggested by engineers.
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o A gazelle calf struggles to its feet minutes after being born. Half an hour later it is
running at 20 miles per hour.

e A mobile robot decides whether it should enter a new room in search of more trash
to collect or start trying to find its way back to its battery recharging station. It
makes its decision based on the current charge level of its battery and how quickly
and easily it has been able to find the recharger in the past.

e Phil prepares his breakfast. Closely examined, even this apparently mundane
activity reveals a complex web of conditional behavior and interlocking goal-subgoal
relationships: walking to the cupboard, opening it, selecting a cereal box, then
reaching for, grasping, and retrieving the box. Other complex, tuned, interactive
sequences of behavior are required to obtain a bowl, spoon, and milk carton. Each
step involves a series of eye movements to obtain information and to guide reaching
and locomotion. Rapid judgments are continually made about how to carry the
objects or whether it is better to ferry some of them to the dining table before
obtaining others. Each step is guided by goals, such as grasping a spoon or getting
to the refrigerator, and is in service of other goals, such as having the spoon to eat
with once the cereal is prepared and ultimately obtaining nourishment. Whether
he is aware of it or not, Phil is accessing information about the state of his body
that determines his nutritional needs, level of hunger, and food preferences.

These examples share features that are so basic that they are easy to overlook. All
involve interaction between an active decision-making agent and its environment, within
which the agent seeks to achieve a goal despite uncertainty about its environment. The
agent’s actions are permitted to affect the future state of the environment (e.g., the
next chess position, the level of reservoirs of the refinery, the robot’s next location and
the future charge level of its battery), thereby affecting the actions and opportunities
available to the agent at later times. Correct choice requires taking into account indirect,
delayed consequences of actions, and thus may require foresight or planning.

At the same time, in all of these examples the effects of actions cannot be fully predicted;
thus the agent must monitor its environment frequently and react appropriately. For
example, Phil must watch the milk he pours into his cereal bowl to keep it from overflowing.
All these examples involve goals that are explicit in the sense that the agent can judge
progress toward its goal based on what it can sense directly. The chess player knows
whether or not he wins, the refinery controller knows how much petroleum is being
produced, the gazelle calf knows when it falls, the mobile robot knows when its batteries
run down, and Phil knows whether or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its performance
over time. The chess player refines the intuition he uses to evaluate positions, thereby
improving his play; the gazelle calf improves the efficiency with which it can run; Phil
learns to streamline making his breakfast. The knowledge the agent brings to the task at
the start—either from previous experience with related tasks or built into it by design or
evolution—influences what is useful or easy to learn, but interaction with the environment
is essential for adjusting behavior to exploit specific features of the task.
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1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subelements of a
reinforcement learning system: a policy, a reward signal, a value function, and, optionally,
a model of the environment.

A policy defines the learning agent’s way of behaving at a given time. Roughly speaking,
a policy is a mapping from perceived states of the environment to actions to be taken
when in those states. It corresponds to what in psychology would be called a set of
stimulus-response rules or associations. In some cases the policy may be a simple function
or lookup table, whereas in others it may involve extensive computation such as a search
process. The policy is the core of a reinforcement learning agent in the sense that it alone
is sufficient to determine behavior. In general, policies may be stochastic, specifying
probabilities for each action.

A reward signal defines the goal of a reinforcement learning problem. On each time
step, the environment sends to the reinforcement learning agent a single number called
the reward. The agent’s sole objective is to maximize the total reward it receives over
the long run. The reward signal thus defines what are the good and bad events for the
agent. In a biological system, we might think of rewards as analogous to the experiences
of pleasure or pain. They are the immediate and defining features of the problem faced
by the agent. The reward signal is the primary basis for altering the policy; if an action
selected by the policy is followed by low reward, then the policy may be changed to
select some other action in that situation in the future. In general, reward signals may
be stochastic functions of the state of the environment and the actions taken.

Whereas the reward signal indicates what is good in an immediate sense, a value
function specifies what is good in the long run. Roughly speaking, the value of a state is
the total amount of reward an agent can expect to accumulate over the future, starting
from that state. Whereas rewards determine the immediate, intrinsic desirability of
environmental states, values indicate the long-term desirability of states after taking into
account the states that are likely to follow and the rewards available in those states. For
example, a state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. Or the reverse
could be true. To make a human analogy, rewards are somewhat like pleasure (if high)
and pain (if low), whereas values correspond to a more refined and farsighted judgment
of how pleased or displeased we are that our environment is in a particular state.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary.
Without rewards there could be no values, and the only purpose of estimating values is to
achieve more reward. Nevertheless, it is values with which we are most concerned when
making and evaluating decisions. Action choices are made based on value judgments. We
seek actions that bring about states of highest value, not highest reward, because these
actions obtain the greatest amount of reward for us over the long run. Unfortunately, it
is much harder to determine values than it is to determine rewards. Rewards are basically
given directly by the environment, but values must be estimated and re-estimated from
the sequences of observations an agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning algorithms we consider is a
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method for efficiently estimating values. The central role of value estimation is arguably
the most important thing that has been learned about reinforcement learning over the
last six decades.

The fourth and final element of some reinforcement learning systems is a model of
the environment. This is something that mimics the behavior of the environment, or
more generally, that allows inferences to be made about how the environment will behave.
For example, given a state and action, the model might predict the resultant next state
and next reward. Models are used for planning, by which we mean any way of deciding
on a course of action by considering possible future situations before they are actually
experienced. Methods for solving reinforcement learning problems that use models and
planning are called model-based methods, as opposed to simpler model-free methods that
are explicitly trial-and-error learners—viewed as almost the opposite of planning. In
Chapter 8 we explore reinforcement learning systems that simultaneously learn by trial
and error, learn a model of the environment, and use the model for planning. Modern
reinforcement learning spans the spectrum from low-level, trial-and-error learning to
high-level, deliberative planning.

1.4 Limitations and Scope

Reinforcement learning relies heavily on the concept of state—as input to the policy and
value function, and as both input to and output from the model. Informally, we can
think of the state as a signal conveying to the agent some sense of “how the environment
is” at a particular time. The formal definition of state as we use it here is given by
the framework of Markov decision processes presented in Chapter 3. More generally,
however, we encourage the reader to follow the informal meaning and think of the state
as whatever information is available to the agent about its environment. In effect, we
assume that the state signal is produced by some preprocessing system that is nominally
part of the agent’s environment. We do not address the issues of constructing, changing,
or learning the state signal in this book (other than briefly in Section 17.3). We take this
approach not because we consider state representation to be unimportant, but in order
to focus fully on the decision-making issues. In other words, our concern in this book is
not with designing the state signal, but with deciding what action to take as a function
of whatever state signal is available.

Most of the reinforcement learning methods we consider in this book are structured
around estimating value functions, but it is not strictly necessary to do this to solve
reinforcement learning problems. For example, solution methods such as genetic algo-
rithms, genetic programming, simulated annealing, and other optimization methods never
estimate value functions. These methods apply multiple static policies each interacting
over an extended period of time with a separate instance of the environment. The policies
that obtain the most reward, and random variations of them, are carried over to the
next generation of policies, and the process repeats. We call these evolutionary methods
because their operation is analogous to the way biological evolution produces organisms
with skilled behavior even if they do not learn during their individual lifetimes. If the
space of policies is sufficiently small, or can be structured so that good policies are
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common or easy to find—or if a lot of time is available for the search—then evolutionary
methods can be effective. In addition, evolutionary methods have advantages on problems
in which the learning agent cannot sense the complete state of its environment.

Our focus is on reinforcement learning methods that learn while interacting with the
environment, which evolutionary methods do not do. Methods able to take advantage
of the details of individual behavioral interactions can be much more efficient than
evolutionary methods in many cases. Evolutionary methods ignore much of the useful
structure of the reinforcement learning problem: they do not use the fact that the policy
they are searching for is a function from states to actions; they do not notice which states
an individual passes through during its lifetime, or which actions it selects. In some cases
this information can be misleading (e.g., when states are misperceived), but more often it
should enable more efficient search. Although evolution and learning share many features
and naturally work together, we do not consider evolutionary methods by themselves to
be especially well suited to reinforcement learning problems and, accordingly, we do not
cover them in this book.

1.5 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with other ap-
proaches, we next consider a single example in more detail.

Consider the familiar child’s game of tic-tac-toe. Two players
take turns playing on a three-by-three board. One player plays
Xs and the other Os until one player wins by placing three marks X100
in a row, horizontally, vertically, or diagonally, as the X player
has in the game shown to the right. If the board fills up with @) X | X
neither player getting three in a row, then the game is a draw.
Because a skilled player can play so as never to lose, let us assume X
that we are playing against an imperfect player, one whose play
is sometimes incorrect and allows us to win. For the moment, in
fact, let us consider draws and losses to be equally bad for us. How might we construct a
player that will find the imperfections in its opponent’s play and learn to maximize its
chances of winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way
through classical techniques. For example, the classical “minimax” solution from game
theory is not correct here because it assumes a particular way of playing by the opponent.
For example, a minimax player would never reach a game state from which it could
lose, even if in fact it always won from that state because of incorrect play by the
opponent. Classical optimization methods for sequential decision problems, such as
dynamic programming, can compute an optimal solution for any opponent, but require
as input a complete specification of that opponent, including the probabilities with which
the opponent makes each move in each board state. Let us assume that this information
is not available a priori for this problem, as it is not for the vast majority of problems of
practical interest. On the other hand, such information can be estimated from experience,
in this case by playing many games against the opponent. About the best one can do
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on this problem is first to learn a model of the opponent’s behavior, up to some level of
confidence, and then apply dynamic programming to compute an optimal solution given
the approximate opponent model. In the end, this is not that different from some of the
reinforcement learning methods we examine later in this book.

An evolutionary method applied to this problem would directly search the space
of possible policies for one with a high probability of winning against the opponent.
Here, a policy is a rule that tells the player what move to make for every state of the
game—every possible configuration of Xs and Os on the three-by-three board. For each
policy considered, an estimate of its winning probability would be obtained by playing
some number of games against the opponent. This evaluation would then direct which
policy or policies were considered next. A typical evolutionary method would hill-climb
in policy space, successively generating and evaluating policies in an attempt to obtain
incremental improvements. Or, perhaps, a genetic-style algorithm could be used that
would maintain and evaluate a population of policies. Literally hundreds of different
optimization methods could be applied.

Here is how the tic-tac-toe problem would be approached with a method making use
of a value function. First we would set up a table of numbers, one for each possible state
of the game. Each number will be the latest estimate of the probability of our winning
from that state. We treat this estimate as the state’s value, and the whole table is the
learned value function. State A has higher value than state B, or is considered “better’
than state B, if the current estimate of the probability of our winning from A is higher
than it is from B. Assuming we always play Xs, then for all states with three Xs in a row
the probability of winning is 1, because we have already won. Similarly, for all states
with three Os in a row, or that are filled up, the correct probability is 0, as we cannot
win from them. We set the initial values of all the other states to 0.5, representing a
guess that we have a 50% chance of winning.

)

We then play many games against the opponent. To select our moves we examine the
states that would result from each of our possible moves (one for each blank space on the
board) and look up their current values in the table. Most of the time we move greedily,
selecting the move that leads to the state with greatest value, that is, with the highest
estimated probability of winning. Occasionally, however, we select randomly from among
the other moves instead. These are called exploratory moves because they cause us to
experience states that we might otherwise never see. A sequence of moves made and
considered during a game can be diagrammed as in Figure 1.1.

While we are playing, we change the values of the states in which we find ourselves
during the game. We attempt to make them more accurate estimates of the probabilities
of winning. To do this, we “back up” the value of the state after each greedy move to
the state before the move, as suggested by the arrows in Figure 1.1. More precisely, the
current value of the earlier state is updated to be closer to the value of the later state.
This can be done by moving the earlier state’s value a fraction of the way toward the
value of the later state. If we let S; denote the state before the greedy move, and S;11
the state after the move, then the update to the estimated value of S, denoted V(S¢),
can be written as

V(Sy) ¢ V(S)) +a|V(Si1) — V(St)],
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starting position

opponent's move

our move

opponent's move

our move

opponent's move

our move

Figure 1.1: A sequence of tic-tac-toe moves. The solid black lines represent the moves taken
during a game; the dashed lines represent moves that we (our reinforcement learning player)
considered but did not make. Our second move was an exploratory move, meaning that it was
taken even though another sibling move, the one leading to e*, was ranked higher. Exploratory
moves do not result in any learning, but each of our other moves does, causing updates as
suggested by the red arrows in which estimated values are moved up the tree from later nodes
to earlier nodes as detailed in the text.

where « is a small positive fraction called the step-size parameter, which influences
the rate of learning. This update rule is an example of a temporal-difference learning
method, so called because its changes are based on a difference, V(Sy11) — V(S), between
estimates at two successive times.

The method described above performs quite well on this task. For example, if the
step-size parameter is reduced properly over time, then this method converges, for any
fixed opponent, to the true probabilities of winning from each state given optimal play
by our player. Furthermore, the moves then taken (except on exploratory moves) are in
fact the optimal moves against this (imperfect) opponent. In other words, the method
converges to an optimal policy for playing the game against this opponent. If the step-size
parameter is not reduced all the way to zero over time, then this player also plays well
against opponents that slowly change their way of playing.

This example illustrates the differences between evolutionary methods and methods
that learn value functions. To evaluate a policy an evolutionary method holds the policy
fixed and plays many games against the opponent, or simulates many games using a model
of the opponent. The frequency of wins gives an unbiased estimate of the probability
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of winning with that policy, and can be used to direct the next policy selection. But
each policy change is made only after many games, and only the final outcome of each
game is used: what happens during the games is ignored. For example, if the player wins,
then all of its behavior in the game is given credit, independently of how specific moves
might have been critical to the win. Credit is even given to moves that never occurred!
Value function methods, in contrast, allow individual states to be evaluated. In the end,
evolutionary and value function methods both search the space of policies, but learning a
value function takes advantage of information available during the course of play.

This simple example illustrates some of the key features of reinforcement learning
methods. First, there is the emphasis on learning while interacting with an environment,
in this case with an opponent player. Second, there is a clear goal, and correct behavior
requires planning or foresight that takes into account delayed effects of one’s choices. For
example, the simple reinforcement learning player would learn to set up multi-move traps
for a shortsighted opponent. It is a striking feature of the reinforcement learning solution
that it can achieve the effects of planning and lookahead without using a model of the
opponent and without conducting an explicit search over possible sequences of future
states and actions.

While this example illustrates some of the key features of reinforcement learning, it is
so simple that it might give the impression that reinforcement learning is more limited
than it really is. Although tic-tac-toe is a two-person game, reinforcement learning
also applies in the case in which there is no external adversary, that is, in the case of
a “game against nature.” Reinforcement learning also is not restricted to problems in
which behavior breaks down into separate episodes, like the separate games of tic-tac-toe,
with reward only at the end of each episode. It is just as applicable when behavior
continues indefinitely and when rewards of various magnitudes can be received at any
time. Reinforcement learning is also applicable to problems that do not even break down
into discrete time steps like the plays of tic-tac-toe. The general principles apply to
continuous-time problems as well, although the theory gets more complicated and we
omit it from this introductory treatment.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can
be used when the state set is very large, or even infinite. For example, Gerry Tesauro
(1992, 1995) combined the algorithm described above with an artificial neural network
to learn to play backgammon, which has approximately 10%° states. With this many
states it is impossible ever to experience more than a small fraction of them. Tesauro’s
program learned to play far better than any previous program and eventually better than
the world’s best human players (Section 16.1). The artificial neural network provides the
program with the ability to generalize from its experience, so that in new states it selects
moves based on information saved from similar states faced in the past, as determined
by its network. How well a reinforcement learning system can work in problems with
such large state sets is intimately tied to how appropriately it can generalize from past
experience. It is in this role that we have the greatest need for supervised learning methods
with reinforcement learning. Artificial neural networks and deep learning (Section 9.6)
are not the only, or necessarily the best, way to do this.

In this tic-tac-toe example, learning started with no prior knowledge beyond the
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rules of the game, but reinforcement learning by no means entails a tabula rasa view of
learning and intelligence. On the contrary, prior information can be incorporated into
reinforcement learning in a variety of ways that can be critical for efficient learning (e.g.,
see Sections 9.5, 17.4, and 13.1). We also have access to the true state in the tic-tac-toe
example, whereas reinforcement learning can also be applied when part of the state is
hidden, or when different states appear to the learner to be the same.

Finally, the tic-tac-toe player was able to look ahead and know the states that would
result from each of its possible moves. To do this, it had to have a model of the game
that allowed it to foresee how its environment would change in response to moves that it
might never make. Many problems are like this, but in others even a short-term model
of the effects of actions is lacking. Reinforcement learning can be applied in either case.
A model is not required, but models can easily be used if they are available or can be
learned (Chapter 8).

On the other hand, there are reinforcement learning methods that do not need any
kind of environment model at all. Model-free systems cannot even think about how
their environments will change in response to a single action. The tic-tac-toe player is
model-free in this sense with respect to its opponent: it has no model of its opponent
of any kind. Because models have to be reasonably accurate to be useful, model-free
methods can have advantages over more complex methods when the real bottleneck in
solving a problem is the difficulty of constructing a sufficiently accurate environment
model. Model-free methods are also important building blocks for model-based methods.
In this book we devote several chapters to model-free methods before we discuss how
they can be used as components of more complex model-based methods.

Reinforcement learning can be used at both high and low levels in a system. Although
the tic-tac-toe player learned only about the basic moves of the game, nothing prevents
reinforcement learning from working at higher levels where each of the “actions” may
itself be the application of a possibly elaborate problem-solving method. In hierarchical
learning systems, reinforcement learning can work simultaneously on several levels.

Ezercise 1.1: Self-Play Suppose, instead of playing against a random opponent, the
reinforcement learning algorithm described above played against itself, with both sides
learning. What do you think would happen in this case? Would it learn a different policy
for selecting moves? O

FEzercise 1.2: Symmetries Many tic-tac-toe positions appear different but are really
the same because of symmetries. How might we amend the learning process described
above to take advantage of this? In what ways would this change improve the learning
process? Now think again. Suppose the opponent did not take advantage of symmetries.
In that case, should we? Is it true, then, that symmetrically equivalent positions should
necessarily have the same value? O

Exercise 1.3: Greedy Play Suppose the reinforcement learning player was greedy, that is,
it always played the move that brought it to the position that it rated the best. Might it
learn to play better, or worse, than a nongreedy player? What problems might occur? [J

FEzercise 1.4: Learning from Ezploration Suppose learning updates occurred after all
moves, including exploratory moves. If the step-size parameter is appropriately reduced
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over time (but not the tendency to explore), then the state values would converge to
a different set of probabilities. What (conceptually) are the two sets of probabilities
computed when we do, and when we do not, learn from exploratory moves? Assuming
that we do continue to make exploratory moves, which set of probabilities might be better
to learn? Which would result in more wins? |

Ezercise 1.5: Other Improvements Can you think of other ways to improve the reinforce-
ment learning player? Can you think of any better way to solve the tic-tac-toe problem
as posed? O

1.6 Summary

Reinforcement learning is a computational approach to understanding and automating
goal-directed learning and decision making. It is distinguished from other computational
approaches by its emphasis on learning by an agent from direct interaction with its
environment, without requiring exemplary supervision or complete models of the envi-
ronment. In our opinion, reinforcement learning is the first field to seriously address the
computational issues that arise when learning from interaction with an environment in
order to achieve long-term goals.

Reinforcement learning uses the formal framework of Markov decision processes to
define the interaction between a learning agent and its environment in terms of states,
actions, and rewards. This framework is intended to be a simple way of representing
essential features of the artificial intelligence problem. These features include a sense of
cause and effect, a sense of uncertainty and nondeterminism, and the existence of explicit
goals.

The concepts of value and value function are key to most of the reinforcement learning
methods that we consider in this book. We take the position that value functions
are important for efficient search in the space of policies. The use of value functions
distinguishes reinforcement learning methods from evolutionary methods that search
directly in policy space guided by evaluations of entire policies.

1.7 Early History of Reinforcement Learning

The early history of reinforcement learning has two main threads, both long and rich, that
were pursued independently before intertwining in modern reinforcement learning. One
thread concerns learning by trial and error, and originated in the psychology of animal
learning. This thread runs through some of the earliest work in artificial intelligence
and led to the revival of reinforcement learning in the early 1980s. The second thread
concerns the problem of optimal control and its solution using value functions and
dynamic programming. For the most part, this thread did not involve learning. The
two threads were mostly independent, but became interrelated to some extent around a
third, less distinct thread concerning temporal-difference methods such as that used in
the tic-tac-toe example in this chapter. All three threads came together in the late 1980s
to produce the modern field of reinforcement learning as we present it in this book.
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The thread focusing on trial-and-error learning is the one with which we are most
familiar and about which we have the most to say in this brief history. Before doing that,
however, we briefly discuss the optimal control thread.

The term “optimal control” came into use in the late 1950s to describe the problem of
designing a controller to minimize or maximize a measure of a dynamical system’s behavior
over time. One of the approaches to this problem was developed in the mid-1950s by
Richard Bellman and others through extending a nineteenth century theory of Hamilton
and Jacobi. This approach uses the concepts of a dynamical system’s state and of a
value function, or “optimal return function,” to define a functional equation, now often
called the Bellman equation. The class of methods for solving optimal control problems
by solving this equation came to be known as dynamic programming (Bellman, 1957a).
Bellman (1957b) also introduced the discrete stochastic version of the optimal control
problem known as Markov decision processes (MDPs). Ronald Howard (1960) devised
the policy iteration method for MDPs. All of these are essential elements underlying the
theory and algorithms of modern reinforcement learning.

Dynamic programming is widely considered the only feasible way of solving general
stochastic optimal control problems. It suffers from what Bellman called “the curse of
dimensionality,” meaning that its computational requirements grow exponentially with the
number of state variables, but it is still far more efficient and more widely applicable than
any other general method. Dynamic programming has been extensively developed since
the late 1950s, including extensions to partially observable MDPs (surveyed by Lovejoy,
1991), many applications (surveyed by White, 1985, 1988, 1993), approximation methods
(surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 1982, 1983). Many
excellent modern treatments of dynamic programming are available (e.g., Bertsekas, 2005,
2012; Puterman, 1994; Ross, 1983; and Whittle, 1982, 1983). Bryson (1996) provides an
authoritative history of optimal control.

Connections between optimal control and dynamic programming, on the one hand,
and learning, on the other, were slow to be recognized. We cannot be sure about what
accounted for this separation, but its main cause was likely the separation between
the disciplines involved and their different goals. Also contributing may have been the
prevalent view of dynamic programming as an offline computation depending essentially
on accurate system models and analytic solutions to the Bellman equation. Further,
the simplest form of dynamic programming is a computation that proceeds backwards
in time, making it difficult to see how it could be involved in a learning process that
must proceed in a forward direction. Some of the earliest work in dynamic programming,
such as that by Bellman and Dreyfus (1959), might now be classified as following
a learning approach. Witten’s (1977) work (discussed below) certainly qualifies as a
combination of learning and dynamic-programming ideas. Werbos (1987) argued explicitly
for greater interrelation of dynamic programming and learning methods and for dynamic
programming’s relevance to understanding neural and cognitive mechanisms. For us the
full integration of dynamic programming methods with online learning did not occur
until the work of Chris Watkins in 1989, whose treatment of reinforcement learning
using the MDP formalism has been widely adopted. Since then these relationships have
been extensively developed by many researchers, most particularly by Dimitri Bertsekas
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and John Tsitsiklis (1996), who coined the term “neurodynamic programming” to refer
to the combination of dynamic programming and artificial neural networks. Another
term currently in use is “approximate dynamic programming.” These various approaches
emphasize different aspects of the subject, but they all share with reinforcement learning
an interest in circumventing the classical shortcomings of dynamic programming.

We consider all of the work in optimal control also to be, in a sense, work in reinforce-
ment learning. We define a reinforcement learning method as any effective way of solving
reinforcement learning problems, and it is now clear that these problems are closely
related to optimal control problems, particularly stochastic optimal control problems
such as those formulated as MDPs. Accordingly, we must consider the solution methods
of optimal control, such as dynamic programming, also to be reinforcement learning
methods. Because almost all of the conventional methods require complete knowledge
of the system to be controlled, it feels a little unnatural to say that they are part of
reinforcement learning. On the other hand, many dynamic programming algorithms are
incremental and iterative. Like learning methods, they gradually reach the correct answer
through successive approximations. As we show in the rest of this book, these similarities
are far more than superficial. The theories and solution methods for the cases of complete
and incomplete knowledge are so closely related that we feel they must be considered
together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of reinforcement
learning, the thread centered on the idea of trial-and-error learning. We only touch on
the major points of contact here, taking up this topic in more detail in Section 14.3.
According to American psychologist R. S. Woodworth (1938) the idea of trial-and-error
learning goes as far back as the 1850s to Alexander Bain’s discussion of learning by
“groping and experiment” and more explicitly to the British ethologist and psychologist
Conway Lloyd Morgan’s 1894 use of the term to describe his observations of animal
behavior. Perhaps the first to succinctly express the essence of trial-and-error learning as
a principle of learning was Edward Thorndike:

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being
equal, be more firmly connected with the situation, so that, when it recurs,
they will be more likely to recur; those which are accompanied or closely
followed by discomfort to the animal will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they will
be less likely to occur. The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond. (Thorndike, 1911, p. 244)

Thorndike called this the “Law of Effect” because it describes the effect of reinforcing
events on the tendency to select actions. Thorndike later modified the law to better
account for subsequent data on animal learning (such as differences between the effects
of reward and punishment), and the law in its various forms has generated considerable
controversy among learning theorists (e.g., see Gallistel, 2005; Herrnstein, 1970; Kimble,
1961, 1967; Mazur, 1994). Despite this, the Law of Effect—in one form or another—is
widely regarded as a basic principle underlying much behavior (e.g., Hilgard and Bower,
1975; Dennett, 1978; Campbell, 1960; Cziko, 1995). It is the basis of the influential
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learning theories of Clark Hull (1943, 1952) and the influential experimental methods of
B. F. Skinner (1938).

The term “reinforcement” in the context of animal learning came into use well after
Thorndike’s expression of the Law of Effect, first appearing in this context (to the best of
our knowledge) in the 1927 English translation of Pavlov’s monograph on conditioned
reflexes. Pavlov described reinforcement as the strengthening of a pattern of behavior due
to an animal receiving a stimulus—a reinforcer—in an appropriate temporal relationship
with another stimulus or with a response. Some psychologists extended the idea of
reinforcement to include weakening as well as strengthening of behavior, and extended
the idea of a reinforcer to include possibly the omission or termination of stimulus. To
be considered reinforcer, the strengthening or weakening must persist after the reinforcer
is withdrawn; a stimulus that merely attracts an animal’s attention or that energizes its
behavior without producing lasting changes would not be considered a reinforcer.

The idea of implementing trial-and-error learning in a computer appeared among the
earliest thoughts about the possibility of artificial intelligence. In a 1948 report, Alan
Turing described a design for a “pleasure-pain system” that worked along the lines of the
Law of Effect:

When a configuration is reached for which the action is undetermined, a
random choice for the missing data is made and the appropriate entry is made
in the description, tentatively, and is applied. When a pain stimulus occurs
all tentative entries are cancelled, and when a pleasure stimulus occurs they
are all made permanent. (Turing, 1948)

Many ingenious electro-mechanical machines were constructed that demonstrated trial-
and-error learning. The earliest may have been a machine built by Thomas Ross (1933)
that was able to find its way through a simple maze and remember the path through
the settings of switches. In 1951 W. Grey Walter built a version of his “mechanical
tortoise” (Walter, 1950) capable of a simple form of learning. In 1952 Claude Shannon
demonstrated a maze-running mouse named Theseus that used trial and error to find
its way through a maze, with the maze itself remembering the successful directions
via magnets and relays under its floor (see also Shannon, 1951). J. A. Deutsch (1954)
described a maze-solving machine based on his behavior theory (Deutsch, 1953) that
has some properties in common with model-based reinforcement learning (Chapter 8).
In his Ph.D. dissertation, Marvin Minsky (1954) discussed computational models of
reinforcement learning and described his construction of an analog machine composed of
components he called SNARCs (Stochastic Neural-Analog Reinforcement Calculators)
meant to resemble modifiable synaptic connections in the brain (Chapter 15). The
web site cyberneticzoo.com contains a wealth of information on these and many other
electro-mechanical learning machines.

Building electro-mechanical learning machines gave way to programming digital com-
puters to perform various types of learning, some of which implemented trial-and-error
learning. Farley and Clark (1954) described a digital simulation of a neural-network
learning machine that learned by trial and error. But their interests soon shifted from
trial-and-error learning to generalization and pattern recognition, that is, from reinforce-
ment learning to supervised learning (Clark and Farley, 1955). This began a pattern
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of confusion about the relationship between these types of learning. Many researchers
seemed to believe that they were studying reinforcement learning when they were actually
studying supervised learning. For example, artificial neural network pioneers such as
Rosenblatt (1962) and Widrow and Hoff (1960) were clearly motivated by reinforcement
learning—they used the language of rewards and punishments—but the systems they
studied were supervised learning systems suitable for pattern recognition and perceptual
learning. Even today, some researchers and textbooks minimize or blur the distinction
between these types of learning. For example, some artificial neural network textbooks
have used the term “trial-and-error” to describe networks that learn from training exam-
ples. This is an understandable confusion because these networks use error information
to update connection weights, but this misses the essential character of trial-and-error
learning as selecting actions on the basis of evaluative feedback that does not rely on
knowledge of what the correct action should be.

Partly as a result of these confusions, research into genuine trial-and-error learning
became rare in the 1960s and 1970s, although there were notable exceptions. In the 1960s
the terms “reinforcement” and “reinforcement learning” were used in the engineering
literature for the first time to describe engineering uses of trial-and-error learning (e.g.,
Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren, 1970). Particularly
influential was Minsky’s paper “Steps Toward Artificial Intelligence” (Minsky, 1961),
which discussed several issues relevant to trial-and-error learning, including prediction,
expectation, and what he called the basic credit-assignment problem for complex rein-
forcement learning systems: How do you distribute credit for success among the many
decisions that may have been involved in producing it? All of the methods we discuss in
this book are, in a sense, directed toward solving this problem. Minsky’s paper is well
worth reading today.

In the next few paragraphs we discuss some of the other exceptions and partial
exceptions to the relative neglect of computational and theoretical study of genuine
trial-and-error learning in the 1960s and 1970s.

One exception was the work of the New Zealand researcher John Andreae, who
developed a system called STeLLA that learned by trial and error in interaction with
its environment. This system included an internal model of the world and, later, an
“internal monologue” to deal with problems of hidden state (Andreae, 1963, 1969a,b).
Andreae’s later work (1977) placed more emphasis on learning from a teacher, but still
included learning by trial and error, with the generation of novel events being one of
the system’s goals. A feature of this work was a “leakback process,” elaborated more
fully in Andreae (1998), that implemented a credit-assignment mechanism similar to the
backing-up update operations that we describe. Unfortunately, his pioneering research
was not well known and did not greatly impact subsequent reinforcement learning research.
Recent summaries are available (Andreae, 2017a,b).

More influential was the work of Donald Michie. In 1961 and 1963 he described a
simple trial-and-error learning system for learning how to play tic-tac-toe (or naughts
and crosses) called MENACE (for Matchbox Educable Naughts and Crosses Engine). It
consisted of a matchbox for each possible game position, each matchbox containing a
number of colored beads, a different color for each possible move from that position. By
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drawing a bead at random from the matchbox corresponding to the current game position,
one could determine MENACE’s move. When a game was over, beads were added to
or removed from the boxes used during play to reward or punish MENACE’s decisions.
Michie and Chambers (1968) described another tic-tac-toe reinforcement learner called
GLEE (Game Learning Expectimaxing Engine) and a reinforcement learning controller
called BOXES. They applied BOXES to the task of learning to balance a pole hinged to
a movable cart on the basis of a failure signal occurring only when the pole fell or the
cart reached the end of a track. This task was adapted from the earlier work of Widrow
and Smith (1964), who used supervised learning methods, assuming instruction from a
teacher already able to balance the pole. Michie and Chambers’s version of pole-balancing
is one of the best early examples of a reinforcement learning task under conditions of
incomplete knowledge. It influenced much later work in reinforcement learning, beginning
with some of our own studies (Barto, Sutton, and Anderson, 1983; Sutton, 1984). Michie
consistently emphasized the role of trial and error and learning as essential aspects of
artificial intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the Least-Mean-Square (LMS) algorithm
of Widrow and Hoff (1960) to produce a reinforcement learning rule that could learn
from success and failure signals instead of from training examples. They called this form
of learning “selective bootstrap adaptation” and described it as “learning with a critic”
instead of “learning with a teacher.” They analyzed this rule and showed how it could
learn to play blackjack. This was an isolated foray into reinforcement learning by Widrow,
whose contributions to supervised learning were much more influential. Our use of the
term “critic” is derived from Widrow, Gupta, and Maitra’s paper. Buchanan, Mitchell,
Smith, and Johnson (1978) independently used the term critic in the context of machine
learning (see also Dietterich and Buchanan, 1984), but for them a critic is an expert
system able to do more than evaluate performance.

Research on learning automata had a more direct influence on the trial-and-error
thread leading to modern reinforcement learning research. These are methods for solving
a nonassociative, purely selectional learning problem known as the k-armed bandit by
analogy to a slot machine, or “one-armed bandit,” except with k levers (see Chapter 2).
Learning automata are simple, low-memory machines for improving the probability
of reward in these problems. Learning automata originated with work in the 1960s
of the Russian mathematician and physicist M. L. Tsetlin and colleagues (published
posthumously in Tsetlin, 1973) and has been extensively developed since then within
engineering (see Narendra and Thathachar, 1974, 1989). These developments included the
study of stochastic learning automata, which are methods for updating action probabilities
on the basis of reward signals. Although not developed in the tradition of stochastic
learning automata, Harth and Tzanakou’s (1974) Alopex algorithm (for Algorithm of
pattern extraction) is a stochastic method for detecting correlations between actions and
reinforcement that influenced some of our early research (Barto, Sutton, and Brouwer,
1981). Stochastic learning automata were foreshadowed by earlier work in psychology,
beginning with William Estes’ (1950) effort toward a statistical theory of learning and
further developed by others (e.g., Bush and Mosteller, 1955; Sternberg, 1963).

The statistical learning theories developed in psychology were adopted by researchers in
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economics, leading to a thread of research in that field devoted to reinforcement learning.
This work began in 1973 with the application of Bush and Mosteller’s learning theory to
a collection of classical economic models (Cross, 1973). One goal of this research was to
study artificial agents that act more like real people than do traditional idealized economic
agents (Arthur, 1991). This approach expanded to the study of reinforcement learning
in the context of game theory. Reinforcement learning in economics developed largely
independently of the early work in reinforcement learning in artificial intelligence, though
game theory remains a topic of interest in both fields (beyond the scope of this book).
Camerer (2011) discusses the reinforcement learning tradition in economics, and Nowé,
Vrancx, and De Hauwere (2012) provide an overview of the subject from the point of view
of multi-agent extensions to the approach that we introduce in this book. Reinforcement
in the context of game theory is a much different subject than reinforcement learning
used in programs to play tic-tac-toe, checkers, and other recreational games. See, for
example, Szita (2012) for an overview of this aspect of reinforcement learning and games.

John Holland (1975) outlined a general theory of adaptive systems based on selectional
principles. His early work concerned trial and error primarily in its nonassociative
form, as in evolutionary methods and the k-armed bandit. In 1976 and more fully in
1986, he introduced classifier systems, true reinforcement learning systems including
association and value functions. A key component of Holland’s classifier systems was
the “bucket-brigade algorithm” for credit assignment, which is closely related to the
temporal difference algorithm used in our tic-tac-toe example and discussed in Chapter 6.
Another key component was a genetic algorithm, an evolutionary method whose role was
to evolve useful representations. Classifier systems have been extensively developed by
many researchers to form a major branch of reinforcement learning research (reviewed by
Urbanowicz and Moore, 2009), but genetic algorithms—which we do not consider to be
reinforcement learning systems by themselves—have received much more attention, as
have other approaches to evolutionary computation (e.g., Fogel, Owens and Walsh, 1966,
and Koza, 1992).

The individual most responsible for reviving the trial-and-error thread to reinforcement
learning within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized
that essential aspects of adaptive behavior were being lost as learning researchers came
to focus almost exclusively on supervised learning. What was missing, according to
Klopf, were the hedonic aspects of behavior, the drive to achieve some result from the
environment, to control the environment toward desired ends and away from undesired
ends (see Section 15.9). This is the essential idea of trial-and-error learning. Klopf’s
ideas were especially influential on the authors because our assessment of them (Barto
and Sutton, 1981a) led to our appreciation of the distinction between supervised and
reinforcement learning, and to our eventual focus on reinforcement learning. Much of
the early work that we and colleagues accomplished was directed toward showing that
reinforcement learning and supervised learning were indeed different (Barto, Sutton, and
Brouwer, 1981; Barto and Sutton, 1981b; Barto and Anandan, 1985). Other studies
showed how reinforcement learning could address important problems in artificial neural
network learning, in particular, how it could produce learning algorithms for multilayer
networks (Barto, Anderson, and Sutton, 1982; Barto and Anderson, 1985; Barto, 1985,
1986; Barto and Jordan, 1987; see Section 15.10).
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We turn now to the third thread to the history of reinforcement learning, that concerning
temporal-difference learning. Temporal-difference learning methods are distinctive in
being driven by the difference between temporally successive estimates of the same
quantity—for example, of the probability of winning in the tic-tac-toe example. This
thread is smaller and less distinct than the other two, but it has played a particularly
important role in the field, in part because temporal-difference methods seem to be new
and unique to reinforcement learning.

The origins of temporal-difference learning are in part in animal learning psychology,
in particular, in the notion of secondary reinforcers. A secondary reinforcer is a stimulus
that has been paired with a primary reinforcer such as food or pain and, as a result, has
come to take on similar reinforcing properties. Minsky (1954) may have been the first to
realize that this psychological principle could be important for artificial learning systems.
Arthur Samuel (1959) was the first to propose and implement a learning method that
included temporal-difference ideas, as part of his celebrated checkers-playing program
(Section 16.2).

Samuel made no reference to Minsky’s work or to possible connections to animal
learning. His inspiration apparently came from Claude Shannon’s (1950) suggestion that
a computer could be programmed to use an evaluation function to play chess, and that it
might be able to improve its play by modifying this function online. (It is possible that
these ideas of Shannon’s also influenced Bellman, but we know of no evidence for this.)
Minsky (1961) extensively discussed Samuel’s work in his “Steps” paper, suggesting the
connection to secondary reinforcement theories, both natural and artificial.

As we have discussed, in the decade following the work of Minsky and Samuel, little
computational work was done on trial-and-error learning, and apparently no computational
work at all was done on temporal-difference learning. In 1972, Klopf brought trial-and-
error learning together with an important component of temporal-difference learning.
Klopf was interested in principles that would scale to learning in large systems, and thus
was intrigued by notions of local reinforcement, whereby subcomponents of an overall
learning system could reinforce one another. He developed the idea of “generalized
reinforcement,” whereby every component (nominally, every neuron) views all of its
inputs in reinforcement terms: excitatory inputs as rewards and inhibitory inputs as
punishments. This is not the same idea as what we now know as temporal-difference
learning, and in retrospect it is farther from it than was Samuel’s work. On the other
hand, Klopf linked the idea with trial-and-error learning and related it to the massive
empirical database of animal learning psychology.

Sutton (1978a,b,c) developed Klopf’s ideas further, particularly the links to animal
learning theories, describing learning rules driven by changes in temporally successive
predictions. He and Barto refined these ideas and developed a psychological model of
classical conditioning based on temporal-difference learning (Sutton and Barto, 1981a;
Barto and Sutton, 1982). There followed several other influential psychological models of
classical conditioning based on temporal-difference learning (e.g., Klopf, 1988; Moore et
al., 1986; Sutton and Barto, 1987, 1990). Some neuroscience models developed at this
time are well interpreted in terms of temporal-difference learning (Hawkins and Kandel,
1984; Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and Tank, 1985; Tesauro,
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1986; Friston et al., 1994), although in most cases there was no historical connection.

Our early work on temporal-difference learning was strongly influenced by animal
learning theories and by Klopf’s work. Relationships to Minsky’s “Steps” paper and to
Samuel’s checkers players were recognized only afterward. By 1981, however, we were
fully aware of all the prior work mentioned above as part of the temporal-difference and
trial-and-error threads. At this time we developed a method for using temporal-difference
learning combined with trial-and-error learning, known as the actor—critic architecture,
and applied this method to Michie and Chambers’s pole-balancing problem (Barto, Sutton,
and Anderson, 1983). This method was extensively studied in Sutton’s (1984) Ph.D.
dissertation and extended to use backpropagation neural networks in Anderson’s (1986)
Ph.D. dissertation. Around this time, Holland (1986) incorporated temporal-difference
ideas explicitly into his classifier systems in the form of his bucket-brigade algorithm.
A key step was taken by Sutton (1988) by separating temporal-difference learning from
control, treating it as a general prediction method. That paper also introduced the TD(A)
algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor—critic architecture in 1981, we discovered
a paper by Ian Witten (1977, 1976a) which appears to be the earliest publication of a
temporal-difference learning rule. He proposed the method that we now call tabular TD(0)
for use as part of an adaptive controller for solving MDPs. This work was first submitted
for journal publication in 1974 and also appeared in Witten’s 1976 PhD dissertation.
Witten’s work was a descendant of Andreae’s early experiments with STeLLA and other
trial-and-error learning systems. Thus, Witten’s 1977 paper spanned both major threads
of reinforcement learning research—trial-and-error learning and optimal control-—while
making a distinct early contribution to temporal-difference learning.

The temporal-difference and optimal control threads were fully brought together
in 1989 with Chris Watkins’s development of Q-learning. This work extended and
integrated prior work in all three threads of reinforcement learning research. Paul Werbos
(1987) contributed to this integration by arguing for the convergence of trial-and-error
learning and dynamic programming since 1977. By the time of Watkins’s work there had
been tremendous growth in reinforcement learning research, primarily in the machine
learning subfield of artificial intelligence, but also in artificial neural networks and artificial
intelligence more broadly. In 1992, the remarkable success of Gerry Tesauro’s backgammon
playing program, TD-Gammon, brought additional attention to the field.

In the time since publication of the first edition of this book, a flourishing subfield of
neuroscience developed that focuses on the relationship between reinforcement learning
algorithms and reinforcement learning in the nervous system. Most responsible for this is
an uncanny similarity between the behavior of temporal-difference algorithms and the
activity of dopamine producing neurons in the brain, as pointed out by a number of
researchers (Friston et al., 1994; Barto, 1995a; Houk, Adams, and Barto, 1995; Montague,
Dayan, and Sejnowski, 1996; and Schultz, Dayan, and Montague, 1997). Chapter 15
provides an introduction to this exciting aspect of reinforcement learning. Other important
contributions made in the recent history of reinforcement learning are too numerous to
mention in this brief account; we cite many of these at the end of the individual chapters
in which they arise.
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Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader to the
books by Szepesvari (2010), Bertsekas and Tsitsiklis (1996), Kaelbling (1993a), and
Sugiyama, Hachiya, and Morimura (2013). Books that take a control or operations research
perspective include those of Si, Barto, Powell, and Wunsch (2004), Powell (2011), Lewis
and Liu (2012), and Bertsekas (2012). Cao’s (2009) review places reinforcement learning
in the context of other approaches to learning and optimization of stochastic dynamic
systems. Three special issues of the journal Machine Learning focus on reinforcement
learning: Sutton (1992a), Kaelbling (1996), and Singh (2002). Useful surveys are provided
by Barto (1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran
(1997). The volume edited by Weiring and van Otterlo (2012) provides an excellent
overview of recent developments.

1.2 The example of Phil’s breakfast in this chapter was inspired by Agre (1988).

1.5 The temporal-difference method used in the tic-tac-toe example is developed in
Chapter 6.



Part I: Tabular Solution Methods

In this part of the book we describe almost all the core ideas of reinforcement learning
algorithms in their simplest forms: that in which the state and action spaces are small
enough for the approximate value functions to be represented as arrays, or tables. In
this case, the methods can often find exact solutions, that is, they can often find exactly
the optimal value function and the optimal policy. This contrasts with the approximate
methods described in the next part of the book, which only find approximate solutions,
but which in return can be applied effectively to much larger problems.

The first chapter of this part of the book describes solution methods for the special
case of the reinforcement learning problem in which there is only a single state, called
bandit problems. The second chapter describes the general problem formulation that we
treat throughout the rest of the book—finite Markov decision processes—and its main
ideas including Bellman equations and value functions.

The next three chapters describe three fundamental classes of methods for solving finite
Markov decision problems: dynamic programming, Monte Carlo methods, and temporal-
difference learning. Each class of methods has its strengths and weaknesses. Dynamic
programming methods are well developed mathematically, but require a complete and
accurate model of the environment. Monte Carlo methods don’t require a model and are
conceptually simple, but are not well suited for step-by-step incremental computation.
Finally, temporal-difference methods require no model and are fully incremental, but are
more complex to analyze. The methods also differ in several ways with respect to their
efficiency and speed of convergence.

The remaining two chapters describe how these three classes of methods can be
combined to obtain the best features of each of them. In one chapter we describe how
the strengths of Monte Carlo methods can be combined with the strengths of temporal-
difference methods via multi-step bootstrapping methods. In the final chapter of this part
of the book we show how temporal-difference learning methods can be combined with
model learning and planning methods (such as dynamic programming) for a complete
and unified solution to the tabular reinforcement learning problem.
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Chapter 2

Multi-armed Bandits

The most important feature distinguishing reinforcement learning from other types of
learning is that it uses training information that evaluates the actions taken rather
than instructs by giving correct actions. This is what creates the need for active
exploration, for an explicit search for good behavior. Purely evaluative feedback indicates
how good the action taken was, but not whether it was the best or the worst action
possible. Purely instructive feedback, on the other hand, indicates the correct action to
take, independently of the action actually taken. This kind of feedback is the basis of
supervised learning, which includes large parts of pattern classification, artificial neural
networks, and system identification. In their pure forms, these two kinds of feedback
are quite distinct: evaluative feedback depends entirely on the action taken, whereas
instructive feedback is independent of the action taken.

In this chapter we study the evaluative aspect of reinforcement learning in a simplified
setting, one that does not involve learning to act in more than one situation. This
nonassociative setting is the one in which most prior work involving evaluative feedback
has been done, and it avoids much of the complexity of the full reinforcement learning
problem. Studying this case enables us to see most clearly how evaluative feedback differs
from, and yet can be combined with, instructive feedback.

The particular nonassociative, evaluative feedback problem that we explore is a simple
version of the k-armed bandit problem. We use this problem to introduce a number
of basic learning methods which we extend in later chapters to apply to the full rein-
forcement learning problem. At the end of this chapter, we take a step closer to the full
reinforcement learning problem by discussing what happens when the bandit problem
becomes associative, that is, when actions are taken in more than one situation.

2.1 A k-armed Bandit Problem

Consider the following learning problem. You are faced repeatedly with a choice among
k different options, or actions. After each choice you receive a numerical reward chosen
from a stationary probability distribution that depends on the action you selected. Your
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objective is to maximize the expected total reward over some time period, for example,
over 1000 action selections, or time steps.

This is the original form of the k-armed bandit problem, so named by analogy to a slot
machine, or “one-armed bandit,” except that it has k levers instead of one. Each action
selection is like a play of one of the slot machine’s levers, and the rewards are the payoffs
for hitting the jackpot. Through repeated action selections you are to maximize your
winnings by concentrating your actions on the best levers. Another analogy is that of
a doctor choosing between experimental treatments for a series of seriously ill patients.
Each action is the selection of a treatment, and each reward is the survival or well-being
of the patient. Today the term “bandit problem” is sometimes used for a generalization
of the problem described above, but in this book we use it to refer just to this simple
case.

In our k-armed bandit problem, each of the k actions has an expected or mean reward
given that that action is selected; let us call this the value of that action. We denote the
action selected on time step ¢t as A;, and the corresponding reward as R;. The value then
of an arbitrary action a, denoted g¢.(a), is the expected reward given that a is selected:

q*(a) = ]E[Rt ‘ At:a] .

If you knew the value of each action, then it would be trivial to solve the k-armed bandit
problem: you would always select the action with highest value. We assume that you do
not know the action values with certainty, although you may have estimates. We denote
the estimated value of action a at time step t as Q¢(a). We would like Q¢(a) to be close
to g.(a).

If you maintain estimates of the action values, then at any time step there is at least
one action whose estimated value is greatest. We call these the greedy actions. When you
select one of these actions, we say that you are exploiting your current knowledge of the
values of the actions. If instead you select one of the nongreedy actions, then we say you
are exploring, because this enables you to improve your estimate of the nongreedy action’s
value. Exploitation is the right thing to do to maximize the expected reward on the one
step, but exploration may produce the greater total reward in the long run. For example,
suppose a greedy action’s value is known with certainty, while several other actions are
estimated to be nearly as good but with substantial uncertainty. The uncertainty is
such that at least one of these other actions probably is actually better than the greedy
action, but you don’t know which one. If you have many time steps ahead on which
to make action selections, then it may be better to explore the nongreedy actions and
discover which of them are better than the greedy action. Reward is lower in the short
run, during exploration, but higher in the long run because after you have discovered
the better actions, you can exploit them many times. Because it is not possible both to
explore and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex
way on the precise values of the estimates, uncertainties, and the number of remaining
steps. There are many sophisticated methods for balancing exploration and exploitation
for particular mathematical formulations of the k-armed bandit and related problems.
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However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

sum of rewards when a taken prior to ¢ Zf;i R 14,-¢

Qi(a) = : (2.1)

number of times a taken prior to ¢ ZZ:} 1a—q

where 1 predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Q;(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Q;(a) converges to
g«(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

Ay = argmax Q(a), (2.2)

where argmax, denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability €, instead
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select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
e-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Q;(a) converge to ¢.(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1 — ¢, that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical effectiveness of
the methods.

Ezercise 2.1 In e-greedy action selection, for the case of two actions and € = 0.5, what is
the probability that the greedy action is selected? O

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and e-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k-armed bandit problems with k£ = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, ¢.(a), a = 1,...,10,

3
2
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1 Q*(S)
. Q*(g)
Reward “
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distribution b 4.(10)
1 2:(8)
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g« (a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g¢.(a) unit variance
normal distribution, as suggested by these gray distributions.
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were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action A; at time step ¢,
the actual reward, R;, was selected from a normal distribution with mean ¢.(A;) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a different bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two e-greedy methods (¢=0.01 and e=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique. The upper graph shows the increase in
expected reward with experience. The greedy method improved slightly faster than the
other methods at the very beginning, but then leveled off at a lower level. It achieved a
reward-per-step of only about 1, compared with the best possible of about 1.55 on this
testbed. The greedy method performed significantly worse in the long run because it

e=0.1
e=0.01
. LMY b
e =0 (greed
Average £=0 (greedy)
reward
0.5 4
0 T T T T 1
1 250 500 750 1000
Steps
100% —,
80% | v o
e=0.1
% 0% £=0.01
Optimal
action 40%
e =0 (greedy)
20% -
0% T T T T 1
1 250 500 750 1000
Steps

Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimates.
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often got stuck performing suboptimal actions. The lower graph shows that the greedy
method found the optimal action in only approximately one-third of the tasks. In the
other two-thirds, its initial samples of the optimal action were disappointing, and it never
returned to it. The e-greedy methods eventually performed better because they continued
to explore and to improve their chances of recognizing the optimal action. The € = 0.1
method explored more, and usually found the optimal action earlier, but it never selected
that action more than 91% of the time. The € = 0.01 method improved more slowly, but
eventually would perform better than the ¢ = 0.1 method on both performance measures
shown in the figure. It is also possible to reduce € over time to try to get the best of both
high and low values.

The advantage of e-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier rewards
it takes more exploration to find the optimal action, and e-greedy methods should fare
even better relative to the greedy method. On the other hand, if the reward variances
were zero, then the greedy method would know the true value of each action after trying
it once. In this case the greedy method might actually perform best because it would
soon find the optimal action and then never explore. But even in the deterministic case
there is a large advantage to exploring if we weaken some of the other assumptions. For
example, suppose the bandit task were nonstationary, that is, the true values of the
actions changed over time. In this case exploration is needed even in the deterministic
case to make sure one of the nongreedy actions has not changed to become better than
the greedy one. As we shall see in the next few chapters, nonstationarity is the case
most commonly encountered in reinforcement learning. Even if the underlying task is
stationary and deterministic, the learner faces a set of banditlike decision tasks each of
which changes over time as learning proceeds and the agent’s decision-making policy
changes. Reinforcement learning requires a balance between exploration and exploitation.

Ezxercise 2.2: Bandit example Consider a k-armed bandit problem with k = 4 actions,
denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm using
e-greedy action selection, sample-average action-value estimates, and initial estimates
of Q1(a) =0, for all a. Suppose the initial sequence of actions and rewards is 4; = 1,
]“21:—].7 A2:2, RQZI, A3:2,R3:—2, A4:2, .R4:27 A5:3, R5:0. On some
of these time steps the € case may have occurred, causing an action to be selected at
random. On which time steps did this definitely occur? On which time steps could this
possibly have occurred? a

Ezercise 2.3 In the comparison shown in Figure 2.2, which method will perform best in
the long run in terms of cumulative reward and probability of selecting the best action?
How much better will it be? Express your answer quantitatively. O

2.4 Incremental Implementation
The action-value methods we have discussed so far all estimate action values as sample

averages of observed rewards. We now turn to the question of how these averages can be
computed in a computationally efficient manner, in particular, with constant memory
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and constant per-time-step computation.

To simplify notation we concentrate on a single action. Let R; now denote the reward
received after the ith selection of this action, and let @QQ,, denote the estimate of its action
value after it has been selected n — 1 times, which we can now write simply as

;R1—|—R2+"'+Rn_1
N n—1 '

Q@n

The obvious implementation would be to maintain a record of all the rewards and then
perform this computation whenever the estimated value was needed. However, if this is
done, then the memory and computational requirements would grow over time as more
rewards are seen. Each additional reward would require additional memory to store it
and additional computation to compute the sum in the numerator.

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given @),, and the nth reward, R,,, the new average of all n rewards
can be computed by

Qny1 = 1 ZRi
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= %(Rn +1Qn — Qn)
= Qn+ % [Rn - Qn}v (2.3)

which holds even for n = 1, obtaining Q2 = R; for arbitrary @);. This implementation
requires memory only for @, and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewEstimate <— OldEstimate + StepSize [Target — OldEstimate|. (2.4)

The expression [Target— OldEstimate} is an error in the estimate. It is reduced by taking
a step toward the “Target.” The target is presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the
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method uses the step-size parameter % In this book we denote the step-size parameter
by « or, more generally, by o (a).

Pseudocode for a complete bandit algorithm using incrementally computed sample
averages and e-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) 0
N(a)+ 0

Loop forever:
4 | argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability
R + bandit(A)
N(A)«+ N(A)+1
Q(A) — Q(4) + xir [R— Q(4)]

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are effectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average ), of the n — 1 past rewards is modified to be

Qui1 = Qu +aRu— Qu. (2.5)

where the step-size parameter « € (0, 1] is constant. This results in Q11 being a weighted
average of past rewards and the initial estimate @Q1:

Quit = Qu+a[Ry=Qul

aR, + (1 —a)Q,

= aR,+(1—-a)laRu-1+ (1 —a)Qn_1]

= aR,+(1—-a)aR, 1+ (1 —a)’Q,_1
aR, 4+ (1 —a)aR,_1 + (1 —a)’aR, o+

(A=) taR + (1 —-a)"Q

= 1-0)"Q1+> a(l—a)" 'R, (2.6)
i=1
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We call this a weighted average because the sum of the weights is (1 — )" + > (1 —
a)?* =1, as you can check for yourself. Note that the weight, a(1 — )" ™%, given to the
reward R; depends on how many rewards ago, n — 4, it was observed. The quantity 1 — «
is less than 1, and thus the weight given to R; decreases as the number of intervening
rewards increases. In fact, the weight decays exponentially according to the exponent
onl—a. (If 1 —a=0,then all the weight goes on the very last reward, R,,, because
of the convention that 0° = 1.) Accordingly, this is sometimes called an exponential
recency-weighted average.

Sometimes it is convenient to vary the step-size parameter from step to step. Let ay,(a)
denote the step-size parameter used to process the reward received after the nth selection
of action a. As we have noted, the choice o, (a) = % results in the sample-average method,
which is guaranteed to converge to the true action values by the law of large numbers.
But of course convergence is not guaranteed for all choices of the sequence {ay,(a)}. A
well-known result in stochastic approximation theory gives us the conditions required to
assure convergence with probability 1:

Z ap(a) = oo and Z a2 (a) < . (2.7)

The first condition is required to guarantee that the steps are large enough to eventually
overcome any initial conditions or random fluctuations. The second condition guarantees
that eventually the steps become small enough to assure convergence.

Note that both convergence conditions are met for the sample-average case, a,(a) = -,
but not for the case of constant step-size parameter, ., (a) = «. In the latter case, the
second condition is not met, indicating that the estimates never completely converge but
continue to vary in response to the most recently received rewards. As we mentioned
above, this is actually desirable in a nonstationary environment, and problems that are
effectively nonstationary are the most common in reinforcement learning. In addition,
sequences of step-size parameters that meet the conditions (2.7) often converge very slowly
or need considerable tuning in order to obtain a satisfactory convergence rate. Although
sequences of step-size parameters that meet these convergence conditions are often used
in theoretical work, they are seldom used in applications and empirical research.

FEzxercise 2.4 1If the step-size parameters, a.,, are not constant, then the estimate @),, is
a weighted average of previously received rewards with a weighting different from that
given by (2.6). What is the weighting on each prior reward for the general case, analogous
to (2.6), in terms of the sequence of step-size parameters? O

Exercise 2.5 (programming) Design and conduct an experiment to demonstrate the
difficulties that sample-average methods have for nonstationary problems. Use a modified
version of the 10-armed testbed in which all the g.(a) start out equal and then take
independent random walks (say by adding a normally distributed increment with mean
zero and standard deviation 0.01 to all the ¢.(a) on each step). Prepare plots like
Figure 2.2 for an action-value method using sample averages, incrementally computed,
and another action-value method using a constant step-size parameter, o = 0.1. Use
€ = 0.1 and longer runs, say of 10,000 steps. (]
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2.6 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once all
actions have been selected at least once, but for methods with constant «, the bias is
permanent, though decreasing over time as given by (2.6). In practice, this kind of bias
is usually not a problem and can sometimes be very helpful. The downside is that the
initial estimates become, in effect, a set of parameters that must be picked by the user, if
only to set them all to zero. The upside is that they provide an easy way to supply some
prior knowledge about what level of rewards can be expected.

Initial action values can also be used as a simple way to encourage exploration. Suppose
that instead of setting the initial action values to zero, as we did in the 10-armed testbed,
we set them all to +5. Recall that the ¢.(a) in this problem are selected from a normal
distribution with mean 0 and variance 1. An initial estimate of +5 is thus wildly optimistic.
But this optimism encourages action-value methods to explore. Whichever actions are
initially selected, the reward is less than the starting estimates; the learner switches to
other actions, being “disappointed” with the rewards it is receiving. The result is that all
actions are tried several times before the value estimates converge. The system does a
fair amount of exploration even if greedy actions are selected all the time.

Figure 2.3 shows the performance on the 10-armed bandit testbed of a greedy method
using Q1(a) = +5, for all a. For comparison, also shown is an e-greedy method with
Q1(a) = 0. Initially, the optimistic method performs worse because it explores more,
but eventually it performs better because its exploration decreases with time. We call
this technique for encouraging exploration optimistic initial values. We regard it as
a simple trick that can be quite effective on stationary problems, but it is far from
being a generally useful approach to encouraging exploration. For example, it is not
well suited to nonstationary problems because its drive for exploration is inherently

100%
Optimistic, greedy
Q1=5, e=0
80% 2
% 60% —| Realistic, € -greedy
. Q1=0, e=0.1
Optimal

action  40%

20% —
0% =7 T T T T |
1 200 400 600 800 1000

Steps

Figure 2.3: The effect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, a = 0.1.
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temporary. If the task changes, creating a renewed need for exploration, this method
cannot help. Indeed, any method that focuses on the initial conditions in any special way
is unlikely to help with the general nonstationary case. The beginning of time occurs
only once, and thus we should not focus on it too much. This criticism applies as well to
the sample-average methods, which also treat the beginning of time as a special event,
averaging all subsequent rewards with equal weights. Nevertheless, all of these methods
are very simple, and one of them—or some simple combination of them—is often adequate
in practice. In the rest of this book we make frequent use of several of these simple
exploration techniques.

Ezercise 2.6: Mysterious Spikes The results shown in Figure 2.3 should be quite reliable
because they are averages over 2000 individual, randomly chosen 10-armed bandit tasks.
Why, then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better or
worse, on average, on particular early steps? (]

FEzxercise 2.7: Unbiased Constant-Step-Size Trick In most of this chapter we have used
sample averages to estimate action values because sample averages do not produce the
initial bias that constant step sizes do (see the analysis leading to (2.6)). However, sample
averages are not a completely satisfactory solution because they may perform poorly
on nonstationary problems. Is it possible to avoid the bias of constant step sizes while
retaining their advantages on nonstationary problems? One way is to use a step size of

Bn = a/0n, (2.8)

to process the nth reward for a particular action, where v > 0 is a conventional constant
step size, and 0, is a trace of one that starts at O:

On =0p—1+a(l —o,_1), forn >0, with oy =0. (2.9)

Carry out an analysis like that in (2.6) to show that @), is an exponential recency-weighted
average without initial bias. (I

2.7 Upper-Confidence-Bound Action Selection

Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates. The greedy actions are those that look best at present, but some of
the other actions may actually be better. e-greedy action selection forces the non-greedy
actions to be tried, but indiscriminately, with no preference for those that are nearly
greedy or particularly uncertain. It would be better to select among the non-greedy
actions according to their potential for actually being optimal, taking into account both
how close their estimates are to being maximal and the uncertainties in those estimates.
One effective way of doing this is to select actions according to

. Int
Ay = arg(rlnax th(a) +c Ni(a) 1 , (2.10)
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where Int denotes the natural logarithm of ¢ (the number that e ~ 2.71828 would have
to be raised to in order to equal ¢), N¢(a) denotes the number of times that action a has
been selected prior to time ¢ (the denominator in (2.1)), and the number ¢ > 0 controls
the degree of exploration. If N;(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
¢ determining the confidence level. Each time «a is selected the uncertainty is presumably
reduced: Ny(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, ¢ increases but
N¢(a) does not; because ¢t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more difficult than e-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One difficulty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another difficulty is dealing with large
state spaces, particularly when using function approximation as developed in Part IT of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

UCB c¢=2

g-greedy € =0.1

Average
reward

i 2I50 S(I)O 7I50 10I00
Steps
Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,

UCB generally performs better than e-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Ezercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if ¢ = 1, then the spike is less prominent. [
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2.8 Gradient Bandit Algorithms

So far in this chapter we have considered methods that estimate action values and use
those estimates to select actions. This is often a good approach, but it is not the only
one possible. In this section we consider learning a numerical preference for each action
a, which we denote Hy(a). The larger the preference, the more often that action is taken,
but the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the action preferences there
is no effect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Hy(a)
Pr{d;=a} = W = m(a), (2.11)

where here we have also introduced a useful new notation, m;(a), for the probability of
taking action a at time ¢. Initially all action preferences are the same (e.g., Hi(a) =0,
for all a) so that all actions have an equal probability of being selected.

FEzercise 2.9 Show that in the case of two actions, the soft-max distribution is the same
as that given by the logistic, or sigmoid, function often used in statistics and artificial
neural networks. O

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting action A; and receiving the reward Ry, the
action preferences are updated by:

Ht+1(At) = Ht(At) =+ Ol(Rt — Rt) (1 — ﬂt(At))7 and

. _ (2.12)
Hyyq1(a) = Hi(a) — a(Rt — Rt)m(a), for all a # Ay,

where o > 0 is a step-size parameter, and R, € R is the average of all the rewards up
through and including time ¢, which can be computed incrementally as described in
Section 2.4 (or Section 2.5 if the problem is nonstationary). The R; term serves as a
baseline with which the reward is compared. If the reward is higher than the baseline,
then the probability of taking A; in the future is increased, and if the reward is below
baseline, then probability is decreased. The non-selected actions move in the opposite
direction.

Figure 2.5 shows results with the gradient bandit algorithm on a variant of the 10-
armed testbed in which the true expected rewards were selected according to a normal
distribution with a mean of +4 instead of zero (and with unit variance as before). This
shifting up of all the rewards has absolutely no effect on the gradient bandit algorithm
because of the reward baseline term, which instantaneously adapts to the new level. But
if the baseline were omitted (that is, if R; was taken to be constant zero in (2.12)), then
performance would be significantly degraded, as shown in the figure.
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the g.(a) are chosen to be near +4 rather than near zero.

The Bandit Gradient Algorithm as Stochastic Gradient Ascent

One can gain a deeper insight into the gradient bandit algorithm by understanding
it as a stochastic approximation to gradient ascent. In exact gradient ascent, each
action preference Hy(a) would be incremented proportional to the increment’s effect
on performance:

OE[R.]
OHy(a)’

Hii1(a) = He(a) + « (2.13)

where the measure of performance here is the expected reward:
E[R] =) m(x)q. (),
xr

and the measure of the increment’s effect is the partial derivative of this performance
measure with respect to the action preference. Of course, it is not possible to
implement gradient ascent exactly in our case because by assumption we do not
know the g.(x), but in fact the updates of our algorithm (2.12) are equal to (2.13)
in expected value, making the algorithm an instance of stochastic gradient ascent.
The calculations showing this require only beginning calculus, but take several
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steps. First we take a closer look at the exact performance gradient:
OE[Ry]
0H,(a) 8Ht [Z B ]
aﬂ't ZZZ
=2 0@
(a)

- awt(x)
Z 4= (@) = 6Ht(a)

where By, called the baseline , can be any scalar that does not depend on z. We can
include a baseline here without changing the equality because the gradient sums
to zero over all the actions, g;}i((z)) = 0—as H(a) is changed, some actions
probabilities go up and some go down, but the sum of the changes must be zero
because the sum of the probabilities is always one.

Next we multiply each term of the sum by m(z) /7 (x):

a’ﬂ't X
8Ht Z’]Tt —Bt)al{t((a))/ﬂ't(x)

The equation is now in the form of an expectation, summing over all possible values
x of the random variable A;, then multiplying by the probability of taking those
values. Thus:

)

=E [(Q*(At) - Bt) %E(é;) /Wt(At)}

_E [(Rt i) %’;ﬁ(‘t; /m(Aa] ,

where here we have chosen the baseline B; = R; and substituted R; for q.(A;),
which is permitted because E[R:|A:] = ¢.«(A:). Shortly we will establish that
ggi((x)) =S Wt(l‘)(]la:z = ﬁt(a)), where 1,—, is defined to be 1 if a = z, else 0.

Assuming that for now, we have

=E[(R: — Ri)m(Ar) (La=a, — me(a)) /m(Ar)]
= E[(Rt - Rt) (]]-a:At - Wt(a))] :

Recall that our plan has been to write the performance gradient as an expectation
of something that we can sample on each step, as we have just done, and then
update on each step proportional to the sample. Substituting a sample of the
expectation above for the performance gradient in (2.13) yields:

Hii1(a) = He(a) + a(Rt = Rt) (]la:At = Wt(a)), for all a,

which you may recognize as being equivalent to our original algorithm (2.12).
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Thus it remains only to show that g;}i((z)) = () (La=s — m(a)), as we assumed.

Recall the standard quotient rule for derivatives:

9 [f(x)} _ U (@) - f(z) %2
oz | g(z) g(@)? '

Using this, we can write

a’/Tt(I') _ 3 . (;17)
OHy(a) 0H(a) '

0 et (=)
B 8Ht(a) 25:1 eHe(y)
9eHt(x) Zk th(y) _ th(x) 8211;:1 eHt ()

— OHi(a) Zv=l 5 9H,(a) (by the quotient rule)

(Zhoyeme)

1, eft@ Zkﬂ eHit(y) _ oHi(z) He(a) )
- — (because 83% = e*)

(Zlgjzl th(y)) i

]]-a:ert(m) th(:v)th(a)

% 3
>yt eHi(y) (Zlgjzl th(y))

= Lly—omi(x) — me(2)me(a)
= Wt(m)(]].azz — 7Tt(CL)). QED

We have just shown that the expected update of the gradient bandit algorithm
is equal to the gradient of expected reward, and thus that the algorithm is an
instance of stochastic gradient ascent. This assures us that the algorithm has robust
convergence properties.

Note that we did not require any properties of the reward baseline other than
that it does not depend on the selected action. For example, we could have set
it to zero, or to 1000, and the algorithm would still be an instance of stochastic
gradient ascent. The choice of the baseline does not affect the expected update
of the algorithm, but it does affect the variance of the update and thus the rate
of convergence (as shown, e.g., in Figure 2.5). Choosing it as the average of the
rewards may not be the very best, but it is simple and works well in practice.
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2.9 Associative Search (Contextual Bandits)

So far in this chapter we have considered only nonassociative tasks, that is, tasks in which
there is no need to associate different actions with different situations. In these tasks
the learner either tries to find a single best action when the task is stationary, or tries to
track the best action as it changes over time when the task is nonstationary. However,
in a general reinforcement learning task there is more than one situation, and the goal
is to learn a policy: a mapping from situations to the actions that are best in those
situations. To set the stage for the full problem, we briefly discuss the simplest way in
which nonassociative tasks extend to the associative setting.

As an example, suppose there are several different k-armed bandit tasks, and that on
each step you confront one of these chosen at random. Thus, the bandit task changes
randomly from step to step. This would appear to you as a single, nonstationary k-armed
bandit task whose true action values change randomly from step to step. You could
try using one of the methods described in this chapter that can handle nonstationarity,
but unless the true action values change slowly, these methods will not work very well.
Now suppose, however, that when a bandit task is selected for you, you are given some
distinctive clue about its identity (but not its action values). Maybe you are facing an
actual slot machine that changes the color of its display as it changes its action values.
Now you can learn a policy associating each task, signaled by the color you see, with
the best action to take when facing that task—for instance, if red, select arm 1; if green,
select arm 2. With the right policy you can usually do much better than you could in
the absence of any information distinguishing one bandit task from another.

This is an example of an associative search task, so called because it involves both
trial-and-error learning to search for the best actions, and association of these actions
with the situations in which they are best. Associative search tasks are often now called
contextual bandits in the literature. Associative search tasks are intermediate between
the k-armed bandit problem and the full reinforcement learning problem. They are like
the full reinforcement learning problem in that they involve learning a policy, but like
our version of the k-armed bandit problem in that each action affects only the immediate
reward. If actions are allowed to affect the next situation as well as the reward, then
we have the full reinforcement learning problem. We present this problem in the next
chapter and consider its ramifications throughout the rest of the book.

Ezxercise 2.10 Suppose you face a 2-armed bandit task whose true action values change
randomly from time step to time step. Specifically, suppose that, for any time step, the
true values of actions 1 and 2 are respectively 0.1 and 0.2 with probability 0.5 (case A),
and 0.9 and 0.8 with probability 0.5 (case B). If you are not able to tell which case you
face at any step, what is the best expectation of success you can achieve and how should
you behave to achieve it? Now suppose that on each step you are told whether you are
facing case A or case B (although you still don’t know the true action values). This is an
associative search task. What is the best expectation of success you can achieve in this
task, and how should you behave to achieve it? O
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2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The e-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a difficult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing
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Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.
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a method, we should attend not just to how well it does at its best parameter setting,
but also to how sensitive it is to its parameter value. All of these algorithms are fairly
insensitive, performing well over a range of parameter values varying by about an order
of magnitude. Overall, on this problem, UCB seems to perform best.

Despite their simplicity, in our opinion the methods presented in this chapter can
fairly be considered the state of the art. There are more sophisticated methods, but their
complexity and assumptions make them impractical for the full reinforcement learning
problem that is our real focus. Starting in Chapter 5 we present learning methods for
solving the full reinforcement learning problem that use in part the simple methods
explored in this chapter.

Although the simple methods explored in this chapter may be the best we can do
at present, they are far from a fully satisfactory solution to the problem of balancing
exploration and exploitation.

One well-studied approach to balancing exploration and exploitation in k-armed bandit
problems is to compute a special kind of action value called a Gittins index. In certain
important special cases, this computation is tractable and leads directly to optimal
solutions, although it does require complete knowledge of the prior distribution of possible
problems, which we generally assume is not available. In addition, neither the theory
nor the computational tractability of this approach appear to generalize to the full
reinforcement learning problem that we consider in the rest of the book.

The Gittins-index approach is an instance of Bayesian methods, which assume a known
initial distribution over the action values and then update the distribution exactly after
each step (assuming that the true action values are stationary). In general, the update
computations can be very complex, but for certain special distributions (called conjugate
priors) they are easy. One possibility is to then select actions at each step according
to their posterior probability of being the best action. This method, sometimes called
posterior sampling or Thompson sampling, often performs similarly to the best of the
distribution-free methods we have presented in this chapter.

In the Bayesian setting it is even conceivable to compute the optimal balance between
exploration and exploitation. One can compute for any possible action the probability
of each possible immediate reward and the resultant posterior distributions over action
values. This evolving distribution becomes the information state of the problem. Given
a horizon, say of 1000 steps, one can consider all possible actions, all possible resulting
rewards, all possible next actions, all next rewards, and so on for all 1000 steps. Given
the assumptions, the rewards and probabilities of each possible chain of events can be
determined, and one need only pick the best. But the tree of possibilities grows extremely
rapidly; even if there were only two actions and two rewards, the tree would have 22000
leaves. It is generally not feasible to perform this immense computation exactly, but
perhaps it could be approximated efficiently. This approach would effectively turn the
bandit problem into an instance of the full reinforcement learning problem. In the end, we
may be able to use approximate reinforcement learning methods such as those presented
in Part II of this book to approach this optimal solution. But that is a topic for research
and beyond the scope of this introductory book.
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Ezercise 2.11 (programming) Make a figure analogous to Figure 2.6 for the nonstationary
case outlined in Exercise 2.5. Include the constant-step-size e-greedy algorithm with
a=0.1. Use runs of 200,000 steps and, as a performance measure for each algorithm and
parameter setting, use the average reward over the last 100,000 steps. O
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Bush and Mosteller, 1955; Estes, 1950).
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algorithms, Holland (1975) emphasized the importance of this conflict, referring
to it as the conflict between the need to exploit and the need for new information.
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Thathachar and Sastry (1985). These are often called estimator algorithms in the
learning automata literature. The term action value is due to Watkins (1989).
The first to use e-greedy methods may also have been Watkins (1989, p. 187),
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was done by Lai and Robbins (1985), Kaelbling (1993b), and Agrawal (1995).
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first developed by Auer, Cesa-Bianchi and Fischer (2002).
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communication). Further discussion of the choice of baseline is provided there
and by Greensmith, Bartlett, and Baxter (2002, 2004) and Dick (2015). Early
systematic studies of algorithms like this were done by Sutton (1984).

The term soft-maz for the action selection rule (2.11) is due to Bridle (1990).
This rule appears to have been first proposed by Luce (1959).

The term associative search and the corresponding problem were introduced by
Barto, Sutton, and Brouwer (1981). The term associative reinforcement learning
has also been used for associative search (Barto and Anandan, 1985), but we
prefer to reserve that term as a synonym for the full reinforcement learning
problem (as in Sutton, 1984). (And, as we noted, the modern literature also
uses the term “contextual bandits” for this problem.) We note that Thorndike’s
Law of Effect (quoted in Chapter 1) describes associative search by referring
to the formation of associative links between situations (states) and actions.
According to the terminology of operant, or instrumental, conditioning (e.g.,
Skinner, 1938), a discriminative stimulus is a stimulus that signals the presence
of a particular reinforcement contingency. In our terms, different discriminative
stimuli correspond to different states.

Bellman (1956) was the first to show how dynamic programming could be used
to compute the optimal balance between exploration and exploitation within a
Bayesian formulation of the problem. The Gittins index approach is due to Gittins
and Jones (1974). Duff (1995) showed how it is possible to learn Gittins indices
for bandit problems through reinforcement learning. The survey by Kumar (1985)
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observable MDPs; see, e.g., Lovejoy (1991).
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pressed as how quickly an algorithm can approach an optimal decision-making
policy. One way to formalize exploration efficiency is by adapting to reinforcement
learning the notion of sample complexity for a supervised learning algorithm,
which is the number of training examples the algorithm needs to attain a desired
degree of accuracy in learning the target function. A definition of the sample
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2003). Li (2012) discusses this and several other approaches in a survey of
theoretical approaches to exploration efficiency in reinforcement learning. A
thorough modern treatment of Thompson sampling is provided by Russo, Van
Roy, Kazerouni, Osband, and Wen (2018).






Chapter 3

Finite Markov Decision
Processes

In this chapter we introduce the formal problem of finite Markov decision processes, or
finite MDPs, which we try to solve in the rest of the book. This problem involves evaluative
feedback, as in bandits, but also an associative aspect—choosing different actions in
different situations. MDPs are a classical formalization of sequential decision making,
where actions influence not just immediate rewards, but also subsequent situations, or
states, and through those future rewards. Thus MDPs involve delayed reward and the
need to tradeoff immediate and delayed reward. Whereas in bandit problems we estimated
the value g.(a) of each action a, in MDPs we estimate the value g.(s,a) of each action a
in each state s, or we estimate the value v,(s) of each state given optimal action selections.
These state-dependent quantities are essential to accurately assigning credit for long-term
consequences to individual action selections.

MDPs are a mathematically idealized form of the reinforcement learning problem
for which precise theoretical statements can be made. We introduce key elements of
the problem’s mathematical structure, such as returns, value functions, and Bellman
equations. We try to convey the wide range of applications that can be formulated as
finite MDPs. As in all of artificial intelligence, there is a tension between breadth of
applicability and mathematical tractability. In this chapter we introduce this tension
and discuss some of the trade-offs and challenges that it implies. Some ways in which
reinforcement learning can be taken beyond MDPs are treated in Chapter 17.

3.1 The Agent—Environment Interface

MDPs are meant to be a straightforward framing of the problem of learning from
interaction to achieve a goal. The learner and decision maker is called the agent. The
thing it interacts with, comprising everything outside the agent, is called the environment.
These interact continually, the agent selecting actions and the environment responding to
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these actions and presenting new situations to the agent.! The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

A en’[I

| Agent |
state reward action
S, R, A
o Rl+1 (
_S.. | Environment ]4—

Figure 3.1: The agent—environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0,1,2,3,....2 At each time step ¢, the agent receives some representation
of the environment’s state, S; € 8, and on that basis selects an action, A; € A(s).> One
time step later, in part as a consequence of its action, the agent receives a numerical
reward, Ryy1 € R C R, and finds itself in a new state, Sy;;1.* The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

So, Ao, R1,51,A1,Ra, 82, A2, Rs, . .. (3.1)

In a finite MDP, the sets of states, actions, and rewards (8, A, and R) all have a finite
number of elements. In this case, the random variables R; and S; have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s’ € 8§ and r € R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s',r|s,a) = Pr{S;=s,Ri=r| Si_1=5,A_1=a}, (3.2)

for all ;s €8, r € R, and a € A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p: 8§ x R x 8§ x A — [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Riy1 instead of R; to denote the reward due to A; because it emphasizes that the next
reward and next state, R¢y1 and Si41, are jointly determined. Unfortunately, both conventions are
widely used in the literature.
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but here it just reminds us that p specifies a probability distribution for each choice of s
and a, that is, that

Z Zp(s’,ﬂs,a) =1, for all s € 8,a € A(s). (3.3)

s'eSreR

In a Markov decision process, the probabilities given by p completely characterize the
environment’s dynamics. That is, the probability of each possible value for S; and R;
depends only on the immediately preceding state and action, S;_; and A;_1, and, given
them, not at all on earlier states and actions. This is best viewed a restriction not on the
decision process, but on the state. The state must include information about all aspects
of the past agent—environment interaction that make a difference for the future. If it
does, then the state is said to have the Markov property. We will assume the Markov
property throughout this book, though starting in Part II we will consider approximation
methods that do not rely on it, and in Chapter 17 we consider how a Markov state can
be learned and constructed from non-Markov observations.

From the four-argument dynamics function, p, one can compute anything else one might
want to know about the environment, such as the state-transition probabilities (which we
denote, with a slight abuse of notation, as a three-argument function p : § x8 x A — [0, 1]),

p(s'|s,a) = Pr{Si=s"|Si_1=s,4i_1=a} = Zp(s',r|s,a). (3.4)
reR

We can also compute the expected rewards for state—action pairs as a two-argument
function r : § x A — R:

r(s,a) = E[R; | Si—1=s,Ai-1=a] = ZTZp(s',Hs,a), (3.5)

reR s'€8

and the expected rewards for state—action—next-state triples as a three-argument function
r:8xAx8—=R,

T(Saaasl) = E[R; | Si—1=5,A-1=0a,5; = S Z ol i r\s a) . (3.6)

“p(s']s,a)

In this book, we usually use the four-argument p function (3.2), but each of these other
notations are also occasionally convenient.

The MDP framework is abstract and flexible and can be applied to many different
problems in many different ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch or
to go to graduate school. Similarly, the states can take a wide variety of forms. They
can be completely determined by low-level sensations, such as direct sensor readings, or
they can be more high-level and abstract, such as symbolic descriptions of objects in a
room. Some of what makes up a state could be based on memory of past sensations or
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even be entirely mental or subjective. For example, an agent could be in the state of not
being sure where an object is, or of having just been surprised in some clearly defined
sense. Similarly, some actions might be totally mental or computational. For example,
some actions might control what an agent chooses to think about, or where it focuses its
attention. In general, actions can be any decisions we want to learn how to make, and
the states can be anything we can know that might be useful in making them.

In particular, the boundary between agent and environment is typically not the same
as the physical boundary of a robot’s or animal’s body. Usually, the boundary is drawn
closer to the agent than that. For example, the motors and mechanical linkages of a robot
and its sensing hardware should usually be considered parts of the environment rather
than parts of the agent. Similarly, if we apply the MDP framework to a person or animal,
the muscles, skeleton, and sensory organs should be considered part of the environment.
Rewards, too, presumably are computed inside the physical bodies of natural and artificial
learning systems, but are considered external to the agent.

The general rule we follow is that anything that cannot be changed arbitrarily by
the agent is considered to be outside of it and thus part of its environment. We do
not assume that everything in the environment is unknown to the agent. For example,
the agent often knows quite a bit about how its rewards are computed as a function of
its actions and the states in which they are taken. But we always consider the reward
computation to be external to the agent because it defines the task facing the agent and
thus must be beyond its ability to change arbitrarily. In fact, in some cases the agent may
know everything about how its environment works and still face a difficult reinforcement
learning task, just as we may know exactly how a puzzle like Rubik’s cube works, but
still be unable to solve it. The agent—environment boundary represents the limit of the
agent’s absolute control, not of its knowledge.

The agent—environment boundary can be located at different places for different
purposes. In a complicated robot, many different agents may be operating at once, each
with its own boundary. For example, one agent may make high-level decisions which form
part of the states faced by a lower-level agent that implements the high-level decisions. In
practice, the agent—environment boundary is determined once one has selected particular
states, actions, and rewards, and thus has identified a specific decision making task of
interest.

The MDP framework is a considerable abstraction of the problem of goal-directed
learning from interaction. It proposes that whatever the details of the sensory, memory,
and control apparatus, and whatever objective one is trying to achieve, any problem of
learning goal-directed behavior can be reduced to three signals passing back and forth
between an agent and its environment: one signal to represent the choices made by the
agent (the actions), one signal to represent the basis on which the choices are made (the
states), and one signal to define the agent’s goal (the rewards). This framework may not
be sufficient to represent all decision-learning problems usefully, but it has proved to be
widely useful and applicable.

Of course, the particular states and actions vary greatly from task to task, and how
they are represented can strongly affect performance. In reinforcement learning, as in
other kinds of learning, such representational choices are at present more art than science.
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In this book we offer some advice and examples regarding good ways of representing
states and actions, but our primary focus is on general principles for learning how to
behave once the representations have been selected.

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to determine
moment-by-moment temperatures and stirring rates for a bioreactor (a large vat of
nutrients and bacteria used to produce useful chemicals). The actions in such an
application might be target temperatures and target stirring rates that are passed to
lower-level control systems that, in turn, directly activate heating elements and motors to
attain the targets. The states are likely to be thermocouple and other sensory readings,
perhaps filtered and delayed, plus symbolic inputs representing the ingredients in the
vat and the target chemical. The rewards might be moment-by-moment measures of the
rate at which the useful chemical is produced by the bioreactor. Notice that here each
state is a list, or vector, of sensor readings and symbolic inputs, and each action is a
vector consisting of a target temperature and a stirring rate. It is typical of reinforcement
learning tasks to have states and actions with such structured representations. Rewards,
on the other hand, are always single numbers. [ |

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to
control the motion of a robot arm in a repetitive pick-and-place task. If we want to learn
movements that are fast and smooth, the learning agent will have to control the motors
directly and have low-latency information about the current positions and velocities of the
mechanical linkages. The actions in this case might be the voltages applied to each motor
at each joint, and the states might be the latest readings of joint angles and velocities.
The reward might be +1 for each object successfully picked up and placed. To encourage
smooth movements, on each time step a small, negative reward can be given as a function
of the moment-to-moment “jerkiness” of the motion. [ ]

FEzercise 3.1 Devise three example tasks of your own that fit into the MDP framework,
identifying for each its states, actions, and rewards. Make the three examples as different
from each other as possible. The framework is abstract and flexible and can be applied in
many different ways. Stretch its limits in some way in at least one of your examples. [J

FEzercise 3.2 Is the MDP framework adequate to usefully represent all goal-directed
learning tasks? Can you think of any clear exceptions? |

Ezercise 3.3 Consider the problem of driving. You could define the actions in terms of
the accelerator, steering wheel, and brake, that is, where your body meets the machine.
Or you could define them farther out—say, where the rubber meets the road, considering
your actions to be tire torques. Or you could define them farther in—say, where your
brain meets your body, the actions being muscle twitches to control your limbs. Or you
could go to a really high level and say that your actions are your choices of where to drive.
What is the right level, the right place to draw the line between agent and environment?
On what basis is one location of the line to be preferred over another? Is there any
fundamental reason for preferring one location over another, or is it a free choice? [
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Example 3.3 Recycling Robot

A mobile robot has the job of collecting empty soda cans in an office environment. It
has sensors for detecting cans, and an arm and gripper that can pick them up and place
them in an onboard bin; it runs on a rechargeable battery. The robot’s control system
has components for interpreting sensory information, for navigating, and for controlling
the arm and gripper. High-level decisions about how to search for cans are made by a
reinforcement learning agent based on the current charge level of the battery. To make a
simple example, we assume that only two charge levels can be distinguished, comprising
a small state set § = {high,low}. In each state, the agent can decide whether to (1)
actively search for a can for a certain period of time, (2) remain stationary and wait
for someone to bring it a can, or (3) head back to its home base to recharge its battery.
When the energy level is high, recharging would always be foolish, so we do not include it
in the action set for this state. The action sets are then A(high) = {search,wait} and
A(low) = {search, wait, recharge}.

The rewards are zero most of the time, but become positive when the robot secures an
empty can, or large and negative if the battery runs all the way down. The best way to
find cans is to actively search for them, but this runs down the robot’s battery, whereas
waiting does not. Whenever the robot is searching, the possibility exists that its battery
will become depleted. In this case the robot must shut down and wait to be rescued
(producing a low reward). If the energy level is high, then a period of active search can
always be completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability « and reduces
it to low with probability 1 — a. On the other hand, a period of searching undertaken
when the energy level is low leaves it low with probability S and depletes the battery
with probability 1 — 8. In the latter case, the robot must be rescued, and the battery is
then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of —3 results whenever the robot has to be rescued. Let rsearch and
Twait, With Tsearch > Twait, respectively denote the expected number of cans the robot
will collect (and hence the expected reward) while searching and while waiting. Finally,
suppose that no cans can be collected during a run home for recharging, and that no cans
can be collected on a step in which the battery is depleted. This system is then a finite
MDP, and we can write down the transition probabilities and the expected rewards, with
dynamics as indicated in the table on the left:

1, Tvait 1-8,-3 B, Tsearcn
s a s’ p(s'|s,a) | r(s,a,s’) ’
high search high @ Tsearch
high  search low l1-—a Tsearch
low search high | 1 -7 -3
low search low B Tsearch , recharge
high wait high 1 Twait
high wait low 0 -
low wait high | O -
low wait low 1 Twait
low recharge  high 1 0
low recharge low 0 -

&, T'search 11—, Tsearcn 1, Tyait

Note that there is a row in the table for each possible combination of current state, s,
action, a € A(s), and next state, s'. Some transitions have zero probability of occurring,
so no expected reward is specified for them. Shown on the right is another useful way of
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summarizing the dynamics of a finite MDP, as a transition graph. There are two kinds of
nodes: state nodes and action nodes. There is a state node for each possible state (a large
open circle labeled by the name of the state), and an action node for each state—action
pair (a small solid circle labeled by the name of the action and connected by a line to the
state node). Starting in state s and taking action a moves you along the line from state
node s to action node (s,a). Then the environment responds with a transition to the next
state’s node via one of the arrows leaving action node (s, a). Each arrow corresponds to
a triple (s,s’,a), where s’ is the next state, and we label the arrow with the transition
probability, p(s’|s, a), and the expected reward for that transition, r(s,a,s’). Note that
the transition probabilities labeling the arrows leaving an action node always sum to 1.

\ J

Ezercise 3.4 Give a table analogous to that in Example 3.3, but for p(s’,r|s,a). It
should have columus for s, a, s, r, and p(s',7|s,a), and a row for every 4-tuple for which
p(s’,r]s,a) > 0. O

3.2 Goals and Rewards

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a
special signal, called the reward, passing from the environment to the agent. At each time
step, the reward is a simple number, R; € R. Informally, the agent’s goal is to maximize
the total amount of reward it receives. This means maximizing not immediate reward,
but cumulative reward in the long run. We can clearly state this informal idea as the
reward hypothesis:

That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).

The use of a reward signal to formalize the idea of a goal is one of the most distinctive
features of reinforcement learning.

Although formulating goals in terms of reward signals might at first appear limiting,
in practice it has proved to be flexible and widely applicable. The best way to see this is
to consider examples of how it has been, or could be, used. For example, to make a robot
learn to walk, researchers have provided reward on each time step proportional to the
robot’s forward motion. In making a robot learn how to escape from a maze, the reward
is often —1 for every time step that passes prior to escape; this encourages the agent to
escape as quickly as possible. To make a robot learn to find and collect empty soda cans
for recycling, one might give it a reward of zero most of the time, and then a reward of
+1 for each can collected. One might also want to give the robot negative rewards when
it bumps into things or when somebody yells at it. For an agent to learn to play checkers
or chess, the natural rewards are +1 for winning, —1 for losing, and 0 for drawing and
for all nonterminal positions.

You can see what is happening in all of these examples. The agent always learns to
maximize its reward. If we want it to do something for us, we must provide rewards
to it in such a way that in maximizing them the agent will also achieve our goals. It
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is thus critical that the rewards we set up truly indicate what we want accomplished.
In particular, the reward signal is not the place to impart to the agent prior knowledge
about how to achieve what we want it to do.® For example, a chess-playing agent should
be rewarded only for actually winning, not for achieving subgoals such as taking its
opponent’s pieces or gaining control of the center of the board. If achieving these sorts
of subgoals were rewarded, then the agent might find a way to achieve them without
achieving the real goal. For example, it might find a way to take the opponent’s pieces
even at the cost of losing the game. The reward signal is your way of communicating to
the robot what you want it to achieve, not how you want it achieved.b

3.3 Returns and Episodes

So far we have discussed the objective of learning informally. We have said that the
agent’s goal is to maximize the cumulative reward it receives in the long run. How might
this be defined formally? If the sequence of rewards received after time step ¢ is denoted
Riy1,Riyo, Riys, ..., then what precise aspect of this sequence do we wish to maximize?
In general, we seek to maximize the expected return, where the return, denoted Gy, is
defined as some specific function of the reward sequence. In the simplest case the return
is the sum of the rewards:

Gt = Riy1 + Rypo + Ryyz + -+ Ry, (3.7)

where T is a final time step. This approach makes sense in applications in which there
is a natural notion of final time step, that is, when the agent—environment interaction
breaks naturally into subsequences, which we call episodes,” such as plays of a game,
trips through a maze, or any sort of repeated interaction. Each episode ends in a special
state called the terminal state, followed by a reset to a standard starting state or to a
sample from a standard distribution of starting states. Even if you think of episodes as
ending in different ways, such as winning and losing a game, the next episode begins
independently of how the previous one ended. Thus the episodes can all be considered to
end in the same terminal state, with different rewards for the different outcomes. Tasks
with episodes of this kind are called episodic tasks. In episodic tasks we sometimes need
to distinguish the set of all nonterminal states, denoted 8, from the set of all states plus
the terminal state, denoted 8. The time of termination, 7', is a random variable that
normally varies from episode to episode.

On the other hand, in many cases the agent—environment interaction does not break
naturally into identifiable episodes, but goes on continually without limit. For example,
this would be the natural way to formulate an on-going process-control task, or an
application to a robot with a long life span. We call these continuing tasks. The return
formulation (3.7) is problematic for continuing tasks because the final time step would

5Better places for imparting this kind of prior knowledge are the initial policy or initial value function,
or in influences on these.

6Section 17.4 delves further into the issue of designing effective reward signals.
"Episodes are sometimes called “trials” in the literature.
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be T = oo, and the return, which is what we are trying to maximize, could itself easily
be infinite. (For example, suppose the agent receives a reward of +1 at each time step.)
Thus, in this book we usually use a definition of return that is slightly more complex
conceptually but much simpler mathematically.

The additional concept that we need is that of discounting. According to this approach,
the agent tries to select actions so that the sum of the discounted rewards it receives over
the future is maximized. In particular, it chooses A; to maximize the expected discounted
return:

Gy = Rt+1 + ’)/Rt+2 + ’}/2Rt+3 +.- = Z’Yth+k+1, (3.8)
k=0

where v is a parameter, 0 < v < 1, called the discount rate.

The discount rate determines the present value of future rewards: a reward received
k time steps in the future is worth only v¥~! times what it would be worth if it were
received immediately. If v < 1, the infinite sum in (3.8) has a finite value as long as the
reward sequence {Ry} is bounded. If v = 0, the agent is “myopic” in being concerned
only with maximizing immediate rewards: its objective in this case is to learn how to
choose A; so as to maximize only R;y;. If each of the agent’s actions happened to
influence only the immediate reward, not future rewards as well, then a myopic agent
could maximize (3.8) by separately maximizing each immediate reward. But in general,
acting to maximize immediate reward can reduce access to future rewards so that the
return is reduced. As v approaches 1, the return objective takes future rewards into
account more strongly; the agent becomes more farsighted.

Returns at successive time steps are related to each other in a way that is important
for the theory and algorithms of reinforcement learning:

Gy = Rip1 +YRiso + V2 Riys + VP Ryqs + - -
= Riy1+7(Rigo +YRiss + YV’ Riga + )
= Rit1 + G (3.9)

Note that this works for all time steps ¢t < T', even if termination occurs at ¢t + 1, if we
define G = 0. This often makes it easy to compute returns from reward sequences.

Note that although the return (3.8) is a sum of an infinite number of terms, it is still
finite if the reward is nonzero and constant—if v < 1. For example, if the reward is a
constant 41, then the return is

= 1
Gi=Y 7= T (3.10)
k=0 v

Ezercise 3.5 The equations in Section 3.1 are for the continuing case and need to be
modified (very slightly) to apply to episodic tasks. Show that you know the modifications
needed by giving the modified version of (3.3). O
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Example 3.4: Pole-Balancing

The objective in this task is to apply

forces to a cart moving along a track

so as to keep a pole hinged to the cart

from falling over: A failure is said to

occur if the pole falls past a given angle

from vertical or if the cart runs off the

track. The pole is reset to vertical

after each failure. This task could be — | DYE [
treated as episodic, where the natural

episodes are the repeated attempts to balance the pole. The reward in this case could be
+1 for every time step on which failure did not occur, so that the return at each time
would be the number of steps until failure. In this case, successful balancing forever would
mean a return of infinity. Alternatively, we could treat pole-balancing as a continuing
task, using discounting. In this case the reward would be —1 on each failure and zero at
all other times. The return at each time would then be related to —y%, where K is the
number of time steps before failure. In either case, the return is maximized by keeping
the pole balanced for as long as possible. [ ]

Ezercise 3.6 Suppose you treated pole-balancing as an episodic task but also used
discounting, with all rewards zero except for —1 upon failure. What then would the
return be at each time? How does this return differ from that in the discounted, continuing
formulation of this task? O

Exercise 3.7 Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task
seems to break down naturally into episodes—the successive runs through the maze—so
you decide to treat it as an episodic task, where the goal is to maximize expected total
reward (3.7). After running the learning agent for a while, you find that it is showing
no improvement in escaping from the maze. What is going wrong? Have you effectively

communicated to the agent what you want it to achieve? O
Ezercise 3.8 Suppose v = 0.5 and the following sequence of rewards is received Ry = —1,
Ry =2, R3 =6, Ry = 3, and R5 = 2, with T' = 5. What are Gy, G1, ..., G57 Hint:
Work backwards. (]
Ezercise 3.9 Suppose v = 0.9 and the reward sequence is R; = 2 followed by an infinite
sequence of 7s. What are G; and G¢? ]

Ezercise 3.10 Prove the second equality in (3.10). O
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3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent—environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action affects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to S;, the state representation at
time ¢, but to S, ;, the state representation at time ¢ of episode i (and similarly for A, ;,
Ry i, T4, T, ete.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between different episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write S; to refer to S ;, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R,=0

R, =+1 R,=+1 R.=+1

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from Sy, we get the reward sequence +1,+1,+1,0,0,0,.... Summing
these, we get the same return whether we sum over the first T rewards (here T' = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that v = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

T
Ge= > "R, (3.11)
k=t+1

including the possibility that T'= oo or v = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)
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3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions
of states (or of state—action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected, or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy 7 at time ¢, then 7(a|s) is the probability that
Ay =aif Sy =s. Like p, 7 is an ordinary function; the “|” in the middle of 7 (als)
merely reminds that it defines a probability distribution over a € A(s) for each s € 8.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Ezercise 8.11 If the current state is S, and actions are selected according to stochastic
policy m, then what is the expectation of R;y; in terms of 7 and the four-argument
function p (3.2)? O

The value function of a state s under a policy 7, denoted v, (s), is the expected return
when starting in s and following 7 thereafter. For MDPs, we can define v, formally by

o0

k
> A Ritri
k=0

vr(8) = EiG: | Si=s] = Ex

St:s] , for all s € 8, (3.12)

where E[] denotes the expected value of a random variable given that the agent follows
policy m, and ¢ is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v, the state-value function for policy .

Similarly, we define the value of taking action a in state s under a policy 7, denoted
g=(s,a), as the expected return starting from s, taking the action a, and thereafter
following policy :

)
g=(s,a) = Ei[Gi| Si=s,4,=a] = E; ZVthJrkH Si=s,A1=a (3.13)
k=0
We call g, the action-value function for policy .
Ezercise 8.12 Give an equation for v, in terms of ¢, and 7. |
FEzercise 3.13 Give an equation for ¢, in terms of v, and the four-argument p. O

The value functions v, and g, can be estimated from experience. For example, if an
agent follows policy m and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
vr(8), as the number of times that state is encountered approaches infinity. If separate
averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, ¢-(s,a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.
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These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v, and ¢, as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy 7 and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v (8) = E[Gy | Si=34]

=ErRis1 + 7G4 | Si=s] (by (3.9))
= Z w(als) Z Zp(s’, r|s,a) {7“ + VEA[G41]St+1 :s']}

= Zw(a\s) Zp(s’,ﬂs, a) {7‘ + vvﬂ(s’)}, for all s €8, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s', are taken from the set § (or from 8 in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s’ and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s’, and r. For each triple,
we compute its probability, m(a|s)p(s’,7|s,a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.
Equation (3.14) is the Bellman equation for v,. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its T
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle o\ T
represents a state—action pair. Starting from state s, the root 30 30 & O
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy 7. From
each of these, the environment could respond with one of several next states, s’ (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.
The value function v, is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

Backup diagram for v,
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compute, approximate, and learn v,. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state-action pair) from its successor states (or
state—action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent off the grid leave its location unchanged, but also result in a reward
of —1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A’. From state B, all actions yield a reward of +5 and take the agent to B’.

Ad |B\ 3.3 8.8/ 4.4/5.3/1.5
\ +5 1.5|3.0] 2.3/ 1.9] 0.5
+10) B 4—1—» 0.1/0.7 0.7 0.4|-0.4)
/ -1.0-0.4/-0.4-0.61-1.2

A4 Actions 1.9-1.3-1.9-1.4]-2.0

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v,, for this policy, for the discounted reward case with
v = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A’, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B’, which has a positive value. From B’ the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B. [ ]

Ezercise 8.1/ The Bellman equation (3.14) must hold for each state for the value function
vr shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at 40.7, with respect to its four neighboring states, valued at
+2.3, +0.4, —0.4, and +0.7. (These numbers are accurate only to one decimal place.) O

FEzercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant ¢ to all the rewards adds a constant, v., to the values of all states, and thus
does not affect the relative values of any states under any policies. What is v, in terms
of ¢ and ~7 a

Ezercise 3.16 Now consider adding a constant ¢ to all the rewards in an episodic task,
such as maze running. Would this have any effect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. O

Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of —1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vpue(s), for the policy that
always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value —1.
Off the green we cannot reach the hole
by putting, and the value is greater. If %

we can reach the green from a state by s
putting, then that state must have value
one less than the green’s value, that is,
—2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled —2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the —2 contour
line must have a value of —3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of —oo.
Overall, it takes us six strokes to get from
the tee to the hole by putting.

'Uputt

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower). [ ]

Ezxercise 3.17 What is the Bellman equation for action values, that S, a

is, for g7 Tt must give the action value ¢,(s,a) in terms of the action /N
values, ¢ (s',a’), of possible successors to the state—action pair (s,a). s
Hint: the backup diagram to the right corresponds to this equation.

Show the sequence of equations analogous to (3.14), but for action A

i
values. ¢ o o oa

¢ backup diagram
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Ezxercise 3.18 The value of a state depends on the values of the actions possible in that
state and on how likely each action is to be taken under the current policy. We can
think of this in terms of a small backup diagram rooted at the state and considering each
possible action:

S
taken with ‘—f_‘vﬂ (S)
probability 7(als) <,
P S N
a1 a2 as

Give the equation corresponding to this intuition and diagram for the value at the root
node, v;(s), in terms of the value at the expected leaf node, ¢, (s, a), given Sy = s. This
equation should include an expectation conditioned on following the policy, . Then give
a second equation in which the expected value is written out explicitly in terms of w(als)
such that no expected value notation appears in the equation. O

Ezercise 3.19 The value of an action, ¢,(s,a), depends on the expected next reward and
the expected sum of the remaining rewards. Again we can think of this in terms of a
small backup diagram, this one rooted at an action (state—action pair) and branching to
the possible next states:

expected §,a <__/r—q,r(s, a)
2| 73 ,
v (s
" o o
51 Sg 53

Give the equation corresponding to this intuition and diagram for the action value,
¢=(8,a), in terms of the expected next reward, R;;1, and the expected next state value,
Ur(St+1), given that S;=s and A;=a. This equation should include an expectation but
not one conditioned on following the policy. Then give a second equation, writing out the
expected value explicitly in terms of p(s’,7]|s, a) defined by (3.2), such that no expected
value notation appears in the equation. O

3.6 Optimal Policies and Optimal Value Functions

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot
of reward over the long run. For finite MDPs, we can precisely define an optimal policy
in the following way. Value functions define a partial ordering over policies. A policy 7 is
defined to be better than or equal to a policy «’ if its expected return is greater than
or equal to that of 7’ for all states. In other words, 7 > 7" if and only if v, (s) > v/ (s)
for all s € §. There is always at least one policy that is better than or equal to all other
policies. This is an optimal policy. Although there may be more than one, we denote all
the optimal policies by m,. They share the same state-value function, called the optimal
state-value function, denoted v,, and defined as

vi(8) = mﬁmxvﬂ(s), (3.15)

for all s € 8.



3.6. Optimal Policies and Optimal Value Functions 63

Optimal policies also share the same optimal action-value function, denoted ¢, and
defined as

¢«(s,a) = max ¢, (s, a), (3.16)

for all s € 8 and a € A(s). For the state—action pair (s,a), this function gives the
expected return for taking action a in state s and thereafter following an optimal policy.
Thus, we can write ¢, in terms of v, as follows:

q*(s, a) = ]E[Rt_H + ’}/U*(St_H) ‘ St:S,At:CL} . (317)

Example 3.7: Optimal Value Functions for Golf The lower part of Figure 3.3
shows the contours of a possible optimal action-value function g¢.(s,driver). These are
the values of each state if we first play a stroke with the driver and afterward select either
the driver or the putter, whichever is better. The driver enables us to hit the ball farther,
but with less accuracy. We can reach the hole in one shot using the driver only if we
are already very close; thus the —1 contour for ¢.(s,driver) covers only a small portion
of the green. If we have two strokes, however, then we can reach the hole from much
farther away, as shown by the —2 contour. In this case we don’t have to drive all the way
to within the small —1 contour, but only to anywhere on the green; from there we can
use the putter. The optimal action-value function gives the values after committing to a
particular first action, in this case, to the driver, but afterward using whichever actions
are best. The —3 contour is still farther out and includes the starting tee. From the tee,
the best sequence of actions is two drives and one putt, sinking the ball in three strokes. B

Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values (3.14). Because it is the optimal
value function, however, v,’s consistency condition can be written in a special form
without reference to any specific policy. This is the Bellman equation for v,, or the
Bellman optimality equation. Intuitively, the Bellman optimality equation expresses the
fact that the value of a state under an optimal policy must equal the expected return for
the best action from that state:

vi(8) = arenﬁ()i) G, (8,0)

= maXEm[Gt | St:s,At:a]

= mgxIEm[RtH +vGiy1 | Si=s,Ar=d] (by (3.9))
= HleIE[Rt_H + ’YU*(St-H) | S;=s, Ay :a] (318)
= max Zp(s', rls,a)[r +yv.(s)]. (3.19)

The last two equations are two forms of the Bellman optimality equation for v,. The
Bellman optimality equation for g, is

qs(s,a) = ]E[Rtﬂ +fyme/qu*(St+1,a’) ‘ Sp=s,4; = a]

= Zp(s’, r|s,a) {r + v max q: (s, CL/)} . (3.20)

s’,r
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The backup diagrams in the figure below show graphically the spans of future states
and actions considered in the Bellman optimality equations for v, and ¢.. These are the
same as the backup diagrams for v, and ¢, presented earlier except that arcs have been
added at the agent’s choice points to represent that the maximum over that choice is
taken rather than the expected value given some policy. The backup diagram on the left
graphically represents the Bellman optimality equation (3.19) and the backup diagram
on the right graphically represents (3.20).

(U*) = (Q*) 5

o A A

OO0 OO OO ¢ o ¢ oa

Figure 3.4: Backup diagrams for v. and q.

For finite MDPs, the Bellman optimality equation for v, (3.19) has a unique solution
independent of the policy. The Bellman optimality equation is actually a system of
equations, one for each state, so if there are n states, then there are n equations in n
unknowns. If the dynamics p of the environment are known, then in principle one can
solve this system of equations for v, using any one of a variety of methods for solving
systems of nonlinear equations. One can solve a related set of equations for g..

Once one has v,, it is relatively easy to determine an optimal policy. For each state
s, there will be one or more actions at which the maximum is obtained in the Bellman
optimality equation. Any policy that assigns nonzero probability only to these actions is
an optimal policy. You can think of this as a one-step search. If you have the optimal
value function, v,, then the actions that appear best after a one-step search will be optimal
actions. Another way of saying this is that any policy that is greedy with respect to the
optimal evaluation function v, is an optimal policy. The term greedy is used in computer
science to describe any search or decision procedure that selects alternatives based only
on local or immediate considerations, without considering the possibility that such a
selection may prevent future access to even better alternatives. Consequently, it describes
policies that select actions based only on their short-term consequences. The beauty of v,
is that if one uses it to evaluate the short-term consequences of actions—specifically, the
one-step consequences—then a greedy policy is actually optimal in the long-term sense in
which we are interested because v, already takes into account the reward consequences of
all possible future behavior. By means of v,, the optimal expected long-term return is
turned into a quantity that is locally and immediately available for each state. Hence, a
one-step-ahead search yields the long-term optimal actions.

Having g, makes choosing optimal actions even easier. With g¢,, the agent does not
even have to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes ¢.(s,a). The action-value function effectively caches the results of all
one-step-ahead searches. It provides the optimal expected long-term return as a value
that is locally and immediately available for each state—action pair. Hence, at the cost of
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representing a function of state—action pairs, instead of just of states, the optimal action-
value function allows optimal actions to be selected without having to know anything
about possible successor states and their values, that is, without having to know anything
about the environment’s dynamics.

Example 3.8: Solving the Gridworld Suppose we solve the Bellman equation for v,
for the simple grid task introduced in Example 3.5 and shown again in Figure 3.5 (left).
Recall that state A is followed by a reward of +10 and transition to state A’, while state
B is followed by a reward of 4+5 and transition to state B’. Figure 3.5 (middle) shows the
optimal value function, and Figure 3.5 (right) shows the corresponding optimal policies.
Where there are multiple arrows in a cell, all of the corresponding actions are optimal.

16.0/17.8/16.0{14.4{13.0

Al B\ 22.0/24.4122.019.4{17.5 — <—I—> — <—I—> —
+5 19.8/22.0{19.8/17.8/16.0 t, Sl |«

+0| |B' 17.8/19.8/17.8/16.0{14.4 t, gl
[ P P P

LS g P P P

— |||

A" 14.4{16.0{14.4/13.0(11.7|
Gridworld 'U* ﬂ-*
Figure 3.5: Optimal solutions to the gridworld example. ]

Example 3.9: Bellman Optimality Equations for the Recycling Robot Using
(3.19), we can explicitly give the Bellman optimality equation for the recycling robot
example. To make things more compact, we abbreviate the states high and low, and the
actions search, wait, and recharge respectively by h, 1, s, w, and re. Because there are
only two states, the Bellman optimality equation consists of two equations. The equation
for v, (h) can be written as follows:

vu(b) = max{ p(alh,s)[r(h, s,h) + 0. ()] + p(L|h, s)[r(h,s,1) + v (1)], }
" p(b [, w)[r(h, w,h) +7v.(b)] +p(L|b,w)lr(h,w, 1) +50.(1)]
J+(

max{ a[rs + 'V'U*<h) +(1- Oé)[?“s + 'Yv*(l)]’ }
Lre + v« (0)] 4 0[ry 4 yv4(1)]

max{ Ts + ylav.(h) + (1 — a)v.(1)], }

Tw + ,YU*( )
Following the same procedure for v, (1) yields the equation
frs = 3(1 = B) +7[(1 = B)vw(h) + Fu.(1)],
v.(1) = max { ry +yv.(1),
Yvs (h)

For any choice of rg, my, «, 3, and v, with 0 < v < 1, 0 < a, 8 < 1, there is exactly
one pair of numbers, v,(h) and v, (1), that simultaneously satisfy these two nonlinear
equations. |
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Explicitly solving the Bellman optimality equation provides one route to finding an
optimal policy, and thus to solving the reinforcement learning problem. However, this
solution is rarely directly useful. It is akin to an exhaustive search, looking ahead at
all possibilities, computing their probabilities of occurrence and their desirabilities in
terms of expected rewards. This solution relies on at least three assumptions that are
rarely true in practice: (1) we accurately know the dynamics of the environment; (2)
we have enough computational resources to complete the computation of the solution;
and (3) the Markov property. For the kinds of tasks in which we are interested, one is
generally not able to implement this solution exactly because various combinations of
these assumptions are violated. For example, although the first and third assumptions
present no problems for the game of backgammon, the second is a major impediment.
Because the game has about 10?0 states, it would take thousands of years on today’s
fastest computers to solve the Bellman equation for v,, and the same is true for finding
g« In reinforcement learning one typically has to settle for approximate solutions.

Many different decision-making methods can be viewed as ways of approximately
solving the Bellman optimality equation. For example, heuristic search methods can be
viewed as expanding the right-hand side of (3.19) several times, up to some depth, forming
a “tree” of possibilities, and then using a heuristic evaluation function to approximate
v, at the “leaf” nodes. (Heuristic search methods such as A* are almost always based
on the episodic case.) The methods of dynamic programming can be related even more
closely to the Bellman optimality equation. Many reinforcement learning methods can
be clearly understood as approximately solving the Bellman optimality equation, using
actual experienced transitions in place of knowledge of the expected transitions. We
consider a variety of such methods in the following chapters.

Exercise 3.20 Draw or describe the optimal state-value function for the golf example. O

FExercise 3.21 Draw or describe the contours of the optimal action-value function for

putting, g (s, putter), for the golf example. |
Ezercise 3.22 Consider the continuing MDP shown on to the

right. The only decision to be made is that in the top state, left right

where two actions are available, left and right. The numbers

show the rewards that are received deterministically after 0 1 0 +2

each action. There are exactly two deterministic policies,
Tiefe and Tyighe. What policy is optimal if v = 0?7 If v = 0.97
If v =0.57 O

Exercise 3.23 Give the Bellman equation for g, for the recycling robot. |

Exercise 3.2 Figure 3.5 gives the optimal value of the best state of the gridworld as
24.4, to one decimal place. Use your knowledge of the optimal policy and (3.8) to express
this value symbolically, and then to compute it to three decimal places. O

Ezercise 3.25 Give an equation for v, in terms of g,. a

Ezercise 3.26 Give an equation for ¢, in terms of v, and the four-argument p. O
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Ezercise 8.27 Give an equation for m, in terms of g,. O
Exercise 3.28 Give an equation for 7, in terms of v, and the four-argument p. O

FEzercise 8.29 Rewrite the four Bellman equations for the four value functions (v, vs, ¢,
and ¢,) in terms of the three argument function p (3.4) and the two-argument function r
(3.5). O

3.7 Optimality and Approximation

We have defined optimal value functions and optimal policies. Clearly, an agent that
learns an optimal policy has done very well, but in practice this rarely happens. For
the kinds of tasks in which we are interested, optimal policies can be generated only
with extreme computational cost. A well-defined notion of optimality organizes the
approach to learning we describe in this book and provides a way to understand the
theoretical properties of various learning algorithms, but it is an ideal that agents can
only approximate to varying degrees. As we discussed above, even if we have a complete
and accurate model of the environment’s dynamics, it is usually not possible to simply
compute an optimal policy by solving the Bellman optimality equation. For example,
board games such as chess are a tiny fraction of human experience, yet large, custom-
designed computers still cannot compute the optimal moves. A critical aspect of the
problem facing the agent is always the computational power available to it, in particular,
the amount of computation it can perform in a single time step.

The memory available is also an important constraint. A large amount of memory
is often required to build up approximations of value functions, policies, and models.
In tasks with small, finite state sets, it is possible to form these approximations using
arrays or tables with one entry for each state (or state—action pair). This we call the
tabular case, and the corresponding methods we call tabular methods. In many cases
of practical interest, however, there are far more states than could possibly be entries
in a table. In these cases the functions must be approximated, using some sort of more
compact parameterized function representation.

Our framing of the reinforcement learning problem forces us to settle for approxi-
mations. However, it also presents us with some unique opportunities for achieving
useful approximations. For example, in approximating optimal behavior, there may be
many states that the agent faces with such a low probability that selecting suboptimal
actions for them has little impact on the amount of reward the agent receives. Tesauro’s
backgammon player, for example, plays with exceptional skill even though it might make
very bad decisions on board configurations that never occur in games against experts. In
fact, it is possible that TD-Gammon makes bad decisions for a large fraction of the game’s
state set. The online nature of reinforcement learning makes it possible to approximate
optimal policies in ways that put more effort into learning to make good decisions for
frequently encountered states, at the expense of less effort for infrequently encountered
states. This is one key property that distinguishes reinforcement learning from other
approaches to approximately solving MDPs.
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3.8 Summary

Let us summarize the elements of the reinforcement learning problem that we have
presented in this chapter. Reinforcement learning is about learning from interaction
how to behave in order to achieve a goal. The reinforcement learning agent and its
environment interact over a sequence of discrete time steps. The specification of their
interface defines a particular task: the actions are the choices made by the agent; the
states are the basis for making the choices; and the rewards are the basis for evaluating
the choices. Everything inside the agent is completely known and controllable by the
agent; everything outside is incompletely controllable but may or may not be completely
known. A policy is a stochastic rule by which the agent selects actions as a function of
states. The agent’s objective is to maximize the amount of reward it receives over time.

When the reinforcement learning setup described above is formulated with well defined
transition probabilities it constitutes a Markov decision process (MDP). A finite MDP is
an MDP with finite state, action, and (as we formulate it here) reward sets. Much of the
current theory of reinforcement learning is restricted to finite MDPs, but the methods
and ideas apply more generally.

The return is the function of future rewards that the agent seeks to maximize (in
expected value). It has several different definitions depending upon the nature of the
task and whether one wishes to discount delayed reward. The undiscounted formulation
is appropriate for episodic tasks, in which the agent—environment interaction breaks
naturally into episodes; the discounted formulation is appropriate for continuing tasks, in
which the interaction does not naturally break into episodes but continues without limit.
We try to define the returns for the two kinds of tasks such that one set of equations can
apply to both the episodic and continuing cases.

A policy’s value functions assign to each state, or state—action pair, the expected return
from that state, or state—action pair, given that the agent uses the policy. The optimal
value functions assign to each state, or state—action pair, the largest expected return
achievable by any policy. A policy whose value functions are optimal is an optimal policy.
Whereas the optimal value functions for states and state—action pairs are unique for a
given MDP, there can be many optimal policies. Any policy that is greedy with respect to
the optimal value functions must be an optimal policy. The Bellman optimality equations
are special consistency conditions that the optimal value functions must satisfy and that
can, in principle, be solved for the optimal value functions, from which an optimal policy
can be determined with relative ease.

A reinforcement learning problem can be posed in a variety of different ways depending
on assumptions about the level of knowledge initially available to the agent. In problems
of complete knowledge, the agent has a complete and accurate model of the environment’s
dynamics. If the environment is an MDP, then such a model consists of the complete four-
argument dynamics function p (3.2). In problems of incomplete knowledge, a complete
and perfect model of the environment is not available.

Even if the agent has a complete and accurate environment model, the agent is
typically unable to perform enough computation per time step to fully use it. The
memory available is also an important constraint. Memory may be required to build
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up accurate approximations of value functions, policies, and models. In most cases of
practical interest there are far more states than could possibly be entries in a table, and
approximations must be made.

A well-defined notion of optimality organizes the approach to learning we describe in
this book and provides a way to understand the theoretical properties of various learning
algorithms, but it is an ideal that reinforcement learning agents can only approximate
to varying degrees. In reinforcement learning we are very much concerned with cases in
which optimal solutions cannot be found but must be approximated in some way.

Bibliographical and Historical Remarks

The reinforcement learning problem is deeply indebted to the idea of Markov decision
processes (MDPs) from the field of optimal control. These historical influences and other
major influences from psychology are described in the brief history given in Chapter 1.
Reinforcement learning adds to MDPs a focus on approximation and incomplete infor-
mation for realistically large problems. MDPs and the reinforcement learning problem
are only weakly linked to traditional learning and decision-making problems in artificial
intelligence. However, artificial intelligence is now vigorously exploring MDP formulations
for planning and decision making from a variety of perspectives. MDPs are more general
than previous formulations used in artificial intelligence in that they permit more general
kinds of goals and uncertainty.

The theory of MDPs is treated by, for example, Bertsekas (2005), White (1969), Whittle
(1982, 1983), and Puterman (1994). A particularly compact treatment of the finite case
is given by Ross (1983). MDPs are also studied under the heading of stochastic optimal
control, where adaptive optimal control methods are most closely related to reinforcement
learning (e.g., Kumar, 1985; Kumar and Varaiya, 1986).

The theory of MDPs evolved from efforts to understand the problem of making sequences
of decisions under uncertainty, where each decision can depend on the previous decisions
and their outcomes. It is sometimes called the theory of multistage decision processes,
or sequential decision processes, and has roots in the statistical literature on sequential
sampling beginning with the papers by Thompson (1933, 1934) and Robbins (1952) that
we cited in Chapter 2 in connection with bandit problems (which are prototypical MDPs
if formulated as multiple-situation problems).

The earliest instance of which we are aware in which reinforcement learning was
discussed using the MDP formalism is Andreae’s (1969b) description of a unified view of
learning machines. Witten and Corbin (1973) experimented with a reinforcement learning
system later analyzed by Witten (1977, 1976a) using the MDP formalism. Although
he did not explicitly mention MDPs, Werbos (1977) suggested approximate solution
methods for stochastic optimal control problems that are related to modern reinforcement
learning methods (see also Werbos, 1982, 1987, 1988, 1989, 1992). Although Werbos’s
ideas were not widely recognized at the time, they were prescient in emphasizing the
importance of approximately solving optimal control problems in a variety of domains,
including artificial intelligence. The most influential integration of reinforcement learning
and MDPs is due to Watkins (1989).
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Chapter 3: Finite Markov Decision Processes

3.1

3.2

3.3-4

3.5-6

Our characterization of the dynamics of an MDP in terms of p(s’,r|s,a) is
slightly unusual. It is more common in the MDP literature to describe the
dynamics in terms of the state transition probabilities p(s’|s, a) and expected
next rewards r(s,a). In reinforcement learning, however, we more often have
to refer to individual actual or sample rewards (rather than just their expected
values). Our notation also makes it plainer that S; and R; are in general jointly
determined, and thus must have the same time index. In teaching reinforcement
learning, we have found our notation to be more straightforward conceptually
and easier to understand.

For a good intuitive discussion of the system-theoretic concept of state, see
Minsky (1967).

The bioreactor example is based on the work of Ungar (1990) and Miller and
Williams (1992). The recycling robot example was inspired by the can-collecting
robot built by Jonathan Connell (1989). Kober and Peters (2012) present a
collection of robotics applications of reinforcement learning.

The reward hypothesis was suggested by Michael Littman (personal communica-
tion).

The terminology of episodic and continuing tasks is different from that usually
used in the MDP literature. In that literature it is common to distinguish
three types of tasks: (1) finite-horizon tasks, in which interaction terminates
after a particular fized number of time steps; (2) indefinite-horizon tasks, in
which interaction can last arbitrarily long but must eventually terminate; and
(3) infinite-horizon tasks, in which interaction does not terminate. Our episodic
and continuing tasks are similar to indefinite-horizon and infinite-horizon tasks,
respectively, but we prefer to emphasize the difference in the nature of the
interaction. This difference seems more fundamental than the difference in the
objective functions emphasized by the usual terms. Often episodic tasks use
an indefinite-horizon objective function and continuing tasks an infinite-horizon
objective function, but we see this as a common coincidence rather than a
fundamental difference.

The pole-balancing example is from Michie and Chambers (1968) and Barto,
Sutton, and Anderson (1983).

Assigning value on the basis of what is good or bad in the long run has ancient
roots. In control theory, mapping states to numerical values representing the
long-term consequences of control decisions is a key part of optimal control theory,
which was developed in the 1950s by extending nineteenth century state-function
theories of classical mechanics (see, e.g., Schultz and Melsa, 1967). In describing
how a computer could be programmed to play chess, Shannon (1950) suggested
using an evaluation function that took into account the long-term advantages
and disadvantages of chess positions.

Watkins’s (1989) Q-learning algorithm for estimating g, (Chapter 6) made action-
value functions an important part of reinforcement learning, and consequently
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these functions are often called “Q-functions.” But the idea of an action-value
function is much older than this. Shannon (1950) suggested that a function
h(P, M) could be used by a chess-playing program to decide whether a move M
in position P is worth exploring. Michie’s (1961, 1963) MENACE system and
Michie and Chambers’s (1968) BOXES system can be understood as estimating
action-value functions. In classical physics, Hamilton’s principal function is
an action-value function; Newtonian dynamics are greedy with respect to this
function (e.g., Goldstein, 1957). Action-value functions also played a central role
in Denardo’s (1967) theoretical treatment of dynamic programming in terms of
contraction mappings.

The Bellman optimality equation (for v,) was popularized by Richard Bellman
(1957a), who called it the “basic functional equation.” The counterpart of the
Bellman optimality equation for continuous time and state problems is known
as the Hamilton—Jacobi-Bellman equation (or often just the Hamilton—Jacobi
equation), indicating its roots in classical physics (e.g., Schultz and Melsa, 1967).

The golf example was suggested by Chris Watkins.






Chapter 4

Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that can be
used to compute optimal policies given a perfect model of the environment as a Markov
decision process (MDP). Classical DP algorithms are of limited utility in reinforcement
learning both because of their assumption of a perfect model and because of their great
computational expense, but they are still important theoretically. DP provides an essential
foundation for the understanding of the methods presented in the rest of this book. In
fact, all of these methods can be viewed as attempts to achieve much the same effect as
DP, only with less computation and without assuming a perfect model of the environment.

We usually assume that the environment is a finite MDP. That is, we assume that its
state, action, and reward sets, 8, A, and R, are finite, and that its dynamics are given by a
set of probabilities p(s’,7|s,a), for all s € 8, a € A(s), r € R, and s’ € 8t (8T is 8 plus a
terminal state if the problem is episodic). Although DP ideas can be applied to problems
with continuous state and action spaces, exact solutions are possible only in special cases.
A common way of obtaining approximate solutions for tasks with continuous states and
actions is to quantize the state and action spaces and then apply finite-state DP methods.
The methods we explore in Chapter 9 are applicable to continuous problems and are a
significant extension of that approach.

The key idea of DP, and of reinforcement learning generally, is the use of value functions
to organize and structure the search for good policies. In this chapter we show how DP
can be used to compute the value functions defined in Chapter 3. As discussed there, we
can easily obtain optimal policies once we have found the optimal value functions, v, or
g«, which satisfy the Bellman optimality equations:

vi(8) = mgxIE[RtH + Y0 (St11) | St=s, Ar=al]

= mapr(s',Ms,a) [r—l—wv*(s’)}, or (4.1)
¢«(s,a) = E[Rt-H + vy max ¢.(Sg41,a") ‘ StZS;At:a}
=3 p( rls,0) [+ ymaxa (s a)|, (4.2)
a/

)

73



74 Chapter 4: Dynamic Programming

for all s € 8, a € A(s), and s’ € 8T. As we shall see, DP algorithms are obtained by
turning Bellman equations such as these into assignments, that is, into update rules for
improving approximations of the desired value functions.

4.1 Policy Evaluation (Prediction)

First we consider how to compute the state-value function v, for an arbitrary policy .
This is called policy evaluation in the DP literature. We also refer to it as the prediction
problem. Recall from Chapter 3 that, for all s € 8,

vr(s) =EL[Gt | Sp=5s]

= Eﬂ[RtJ'_l + G4 ‘ StZS] (from (39))
= Ex[Riy1 + 02 (Sev1) | Se=5] (4.3)
= > lals) > p(s' rls.a) |r + ya(s)] (4.4)

where 7(als) is the probability of taking action a in state s under policy =, and the
expectations are subscripted by 7 to indicate that they are conditional on 7 being followed.
The existence and uniqueness of v, are guaranteed as long as either v < 1 or eventual
termination is guaranteed from all states under the policy 7.

If the environment’s dynamics are completely known, then (4.4) is a system of ||
simultaneous linear equations in |8| unknowns (the v, (s), s € 8). In principle, its solution
is a straightforward, if tedious, computation. For our purposes, iterative solution methods
are most suitable. Consider a sequence of approximate value functions vg, v1, ve, .. ., each
mapping 8T to R (the real numbers). The initial approximation, vy, is chosen arbitrarily
(except that the terminal state, if any, must be given value 0), and each successive
approximation is obtained by using the Bellman equation for v, (4.4) as an update rule:

vki1(s) = Ex[Ripr + yop(Se) | Se=s]
= Z 7(als) Zp(s’, r|s,a) {T + Yok (s’)] , (4.5)

for all s € 8. Clearly, vy = v, is a fixed point for this update rule because the Bellman
equation for v, assures us of equality in this case. Indeed, the sequence {vy} can be
shown in general to converge to v, as k — oo under the same conditions that guarantee
the existence of v,. This algorithm is called iterative policy evaluation.

To produce each successive approximation, v, from vy, iterative policy evaluation
applies the same operation to each state s: it replaces the old value of s with a new value
obtained from the old values of the successor states of s, and the expected immediate
rewards, along all the one-step transitions possible under the policy being evaluated. We
call this kind of operation an expected update. Each iteration of iterative policy evalu-
ation updates the value of every state once to produce the new approximate value function
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vgt+1- There are several different kinds of expected updates, depending on whether a
state (as here) or a state—action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vi(s), and one
for the new values, vg11(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v,; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxses |vg+1(s)—vk(s)| after each sweep and stops when it is sufficiently
small.

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v V(s)
V(s) & X, 7lals) Sy 5,715, 0) [ +4V()]
A — max(A, v — V(s)])
until A < 0
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Example 4.1 Consider the 4 x4 gridworld shown below.

4 |5 |6 |7 Ry = -1
on all transitions

8 9 10 |11

actions
12 13 [14

The nonterminal states are § = {1,2,...,14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent off the grid in fact leave
the state unchanged. Thus, for instance, p(6,—1|5,right) =1, p(7,—1|7,right) = 1,
and p(10,7|5,right) = 0 for all » € R. This is an undiscounted, episodic task. The
reward is —1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s’) = —1 for all states s, s’ and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {v;} computed by iterative policy
evaluation. The final estimate is in fact v, which in this case gives for each state the
negation of the expected number of steps from that state until termination. [ |

Ezercise 4.1 In Example 4.1, if 7 is the equiprobable random policy, what is ¢, (11, down)?
What is ¢ (7,down)? O

Ezercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v, (15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v, (15) for the equiprobable random policy in this case? ]

Ezercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function ¢, and its successive approximation by a sequence of functions qq, g1, g2, - - .7
O

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v, for an arbitrary deterministic policy
7. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a # 7(s). We know how good it is to follow the
current policy from s—that is v, (s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter
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Vg for the greedy policy
random policy w.r.t. vk
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Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.
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following the existing policy, . The value of this way of behaving is
qTr(S7 a) = E[Rt—i-l + ’YU.,T(StJ,_l) | Si=s, Ay :a] (46)
= Zp(s/, r|s,a) [r + 'yvﬂ(s’)} .
s'r

The key criterion is whether this is greater than or less than v, (s). If it is greater—that
is, if it is better to select a once in s and thereafter follow 7 than it would be to follow
7 all the time—then one would expect it to be better still to select a every time s is
encountered, and that the new policy would in fact be a better one overall.

That this is true is a special case of a general result called the policy improvement
theorem. Let m and 7’ be any pair of deterministic policies such that, for all s € 8,

Gr (8,7 (8)) > vr(s). (4.7)

Then the policy 7’ must be as good as, or better than, . That is, it must obtain greater
or equal expected return from all states s € 8:

v (8) = vr (). (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict
inequality of (4.8) at that state. This result applies in particular to the two policies
that we considered in the previous paragraph, an original deterministic policy, 7, and a
changed policy, 7', that is identical to m except that 7'(s) = a # 7(s). Obviously, (4.7)
holds at all states other than s. Thus, if ¢.(s,a) > v,(s), then the changed policy is
indeed better than 7.

The idea behind the proof of the policy improvement theorem is easy to understand.
Starting from (4.7), we keep expanding the ¢, side with (4.6) and reapplying (4.7) until
we get v ($):

v (8) < gr(s,7(s))

=E[Rit1 + y0r(Se41) | Se=5, Ay =7'(s)] (by (4.6))
=Er[Riv1 +y0r(Se41) | Se=54]
SEw[Rit1 + 7Gx (Se41, 7 (Si41)) | Se=3] (by (4.7))

=Ex[Riv1 + VEr[Riy2 + y0r (Sta2)Se41, Arr1 =7 (Seq1)] | Sp =]
=E. [Rt+1 + YRiyo + 'YQUW(St+2) ’ St:s}
< Ex[Rip1 + YRz + 7V Rigs + 7V vr(Siys) | Se=s]

<E. [Rt+1 + 'YRt+2 + ’YQRt+3 + ’73Rt+4 + - | St:S]

= v (8).

So far we have seen how, given a policy and its value function, we can easily evaluate
a change in the policy at a single state to a particular action. It is a natural extension
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to consider changes at all states and to all possible actions, selecting at each state the
action that appears best according to ¢ (s,a). In other words, to consider the new greedy
policy, 7/, given by

7'(s) = argmaxgq.(s,a)

= argmaxE[Riy1 + Yvr(Ses1) | St=s,Ar=aq] (4.9)
= argmax s'rls,a)|r +yvg(s)],
gmasx ) p(s 7 ) [+ 70s(s)]

where argmax, denotes the value of a at which the expression that follows is maximized
(with ties broken arbitrarily). The greedy policy takes the action that looks best in the
short term—after one step of lookahead—according to v,. By construction, the greedy
policy meets the conditions of the policy improvement theorem (4.7), so we know that it
is as good as, or better than, the original policy. The process of making a new policy that
improves on an original policy, by making it greedy with respect to the value function of
the original policy, is called policy improvement.

Suppose the new greedy policy, 7/, is as good as, but not better than, the old policy 7.
Then v, = v, and from (4.9) it follows that for all s € 8:

v (s) = mL?X]E[RtH + Y0 (Sey1) | Se=s5, Ar=a]

_ / (o
= mgxep(s ,r\s,a){r+’yvﬁ (s )}
s',r

But this is the same as the Bellman optimality equation (4.1), and therefore, v, must be
V4, and both 7 and 7’ must be optimal policies. Policy improvement thus must give us a
strictly better policy except when the original policy is already optimal.

So far in this section we have considered the special case of deterministic policies.
In the general case, a stochastic policy 7 specifies probabilities, 7(als), for taking each
action, a, in each state, s. We will not go through the details, but in fact all the ideas of
this section extend easily to stochastic policies. In particular, the policy improvement
theorem carries through as stated for the stochastic case. In addition, if there are ties in
policy improvement steps such as (4.9)—that is, if there are several actions at which the
maximum is achieved—then in the stochastic case we need not select a single action from
among them. Instead, each maximizing action can be given a portion of the probability
of being selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.1 shows an example of policy improvement for stochastic
policies. Here the original policy, m, is the equiprobable random policy, and the new
policy, 7/, is greedy with respect to v,. The value function v, is shown in the bottom-left
diagram and the set of possible 7’ is shown in the bottom-right diagram. The states
with multiple arrows in the 7’ diagram are those in which several actions achieve the
maximum in (4.9); any apportionment of probability among these actions is permitted.
The value function of any such policy, v,/ (s), can be seen by inspection to be either —1,
—2, or —3 at all states, s € 8§, whereas v.(s) is at most —14. Thus, v, (s) > v (s), for all
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s € 8, illustrating policy improvement. Although in this case the new policy 7’ happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, 7, has been improved using v, to yield a better policy, 7/, we can then
compute v, and improve it again to yield an even better /. We can thus obtain a
sequence of monotonically improving policies and value functions:

E I E I E I E
O — Uy —> T —> Upy —> Mg —> ++ — Ty — Uy,

where — denotes a policy evaluation and — denotes a policy improvement. Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A+0
Loop for each s € §:
v+ V(s)
V(s) 4= Sy, p(s 7], 7(8)) [r + 4V (5")]
A +— max(A, v — V(s)])
until A < @ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € §:
old-action + 7(s)
m(s) « argmax, >, . p(s', (s, a) [r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 = ,; else go to 2
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Example 4.2: Jack’s Car Rental Jack manages two locations for a nationwide car
rental company. Each day, some number of customers arrive at each location to rent cars.
If Jack has a car available, he rents it out and is credited $10 by the national company.
If he is out of cars at that location, then the business is lost. Cars become available for
renting the day after they are returned. To help ensure that cars are available where
they are needed, Jack can move them between the two locations overnight, at a cost of
$2 per car moved. We assume that the number of cars requested and returned at each
location are Poisson random variables, meaning that the probability that the number is
n is %e"\, where ) is the expected number. Suppose A is 3 and 4 for rental requests at
the first and second locations and 3 and 2 for returns. To simplify the problem slightly,
we assume that there can be no more than 20 cars at each location (any additional cars
are returned to the nationwide company, and thus disappear from the problem) and a
maximum of five cars can be moved from one location to the other in one night. We take
the discount rate to be v = 0.9 and formulate this as a continuing finite MDP, where
the time steps are days, the state is the number of cars at each location at the end of
the day, and the actions are the net numbers of cars moved between the two locations
overnight. Figure 4.2 shows the sequence of policies found by policy iteration starting
from the policy that never moves any cars.

0

20

#Cars at first location

o =3[ &
0 .20
#Cars at second location

Figure 4.2: The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each
successive policy is a strict improvement over the previous policy, and the last policy is optimal. B
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Policy iteration often converges in surprisingly few iterations, as the example of Jack’s
car rental illustrates, and as is also illustrated by the example in Figure 4.1. The bottom-
left diagram of Figure 4.1 shows the value function for the equiprobable random policy,
and the bottom-right diagram shows a greedy policy for this value function. The policy
improvement theorem assures us that these policies are better than the original random
policy. In this case, however, these policies are not just better, but optimal, proceeding
to the terminal states in the minimum number of steps. In this example, policy iteration
would find the optimal policy after just one iteration.

Ezercise 4.4 The policy iteration algorithm on page 80 has a subtle bug in that it may
never terminate if the policy continually switches between two or more policies that are
equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode so
that convergence is guaranteed. (]

Ezxercise 4.5 How would policy iteration be defined for action values? Give a complete
algorithm for computing g., analogous to that on page 80 for computing v,.. Please pay
special attention to this exercise, because the ideas involved will be used throughout the
rest of the book. |

Exercise 4.6 Suppose you are restricted to considering only policies that are e-soft,
meaning that the probability of selecting each action in each state, s, is at least £/|A(s)|.
Describe qualitatively the changes that would be required in each of the steps 3, 2, and 1,
in that order, of the policy iteration algorithm for v, on page 80. O

FEzercise 4.7 (programming) Write a program for policy iteration and re-solve Jack’s car
rental problem with the following changes. One of Jack’s employees at the first location
rides a bus home each night and lives near the second location. She is happy to shuttle
one car to the second location for free. Each additional car still costs $2, as do all cars
moved in the other direction. In addition, Jack has limited parking space at each location.
If more than 10 cars are kept overnight at a location (after any moving of cars), then an
additional cost of $4 must be incurred to use a second parking lot (independent of how
many cars are kept there). These sorts of nonlinearities and arbitrary dynamics often
occur in real problems and cannot easily be handled by optimization methods other than
dynamic programming. To check your program, first replicate the results given for the
original problem. (|

4.4 Value Iteration

One drawback to policy iteration is that each of its iterations involves policy evaluation,
which may itself be a protracted iterative computation requiring multiple sweeps through
the state set. If policy evaluation is done iteratively, then convergence exactly to v,
occurs only in the limit. Must we wait for exact convergence, or can we stop short of
that? The example in Figure 4.1 certainly suggests that it may be possible to truncate
policy evaluation. In that example, policy evaluation iterations beyond the first three
have no effect on the corresponding greedy policy.

In fact, the policy evaluation step of policy iteration can be truncated in several ways
without losing the convergence guarantees of policy iteration. One important special
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case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vet1(s) = méiXE[RtH + Yk (St1) | Se=s, Ar=d]
= mapr(s',r|s,a) {r —|—’yvk(s’)], (4.10)
s'r

for all s € 8. For arbitrary vg, the sequence {vy} can be shown to converge to v, under
the same conditions that guarantee the existence of v,.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
vy and vy.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v.. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v V(s)

| V(s) ¢ max, > . p(s',7]s,0a) [r+~V(s)]
| A+ max(A, v — V(s)])

until A < 6

Output a deterministic policy, m & ,, such that
7m(s) = argmax, Zs,mp(s’, r|s,a) [r + 'yV(s’)]

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only difference between
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these updates, this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted finite
MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to make bets on
the outcomes of a sequence of coin flips. If the coin comes up heads, he wins as many
dollars as he has staked on that flip; if it is tails, he loses his stake. The game ends
when the gambler wins by reaching his goal of $100, or loses by running out of money.
On each flip, the gambler must decide what portion of his capital to stake, in integer
numbers of dollars. This problem can be formulated as an undiscounted, episodic, finite
MDP. The state is the gambler’s capi-

tal, s € {1,2,...,99} and the actions 14
are stakes, a € {0,1,...,min(s, 100 — Final value ‘
s)}. The reward is zero on all transi- %7 function
tions except those on which the gam-

. .o Value
bler reaches his goal, when it is +1. estimates
The state-value function then gives 044
the probability of winning from each
state. A policy is a mapping from 1
levels of capital to stakes. The opti- e s S ‘
mal policy maximizes the probability ! » 0 7 9
of reaching the goal. Let pj denote Capital
the probability of the coin coming up
heads. If p; is known, then the en- 50
tire problem is known and it can be i 40

. . . Final
solved, for instance, by value iteration.  pjicy
Figure 4.3 shows the change in the  (stake) 2°
value function over successive sweeps |
of value iteration, and the final policy i 2 50 75 99
found, for the case of p = 0.4. This Capital
policy is optimal, but not unique. In
fact, there is a whole family of opti-
mal policies, all corresponding to ties
for the argmax action selection with
respect to the optimal value function.
Can you guess what the entire family
looks like? [ |

,’/ |
|
AT ‘ ‘\<7fsweep1

P e —— sweep 2

Figure 4.3: The solution to the gambler’s problem
for pr, = 0.4. The upper graph shows the value func-
tion found by successive sweeps of value iteration. The
lower graph shows the final policy.

Ezercise 4.8 Why does the optimal policy for the gambler’s problem have such a curious
form? In particular, for capital of 50 it bets it all on one flip, but for capital of 51 it does
not. Why is this a good policy? |

Ezercise 4.9 (programming) Implement value iteration for the gambler’s problem and
solve it for pp = 0.25 and p, = 0.55. In programming, you may find it convenient to
introduce two dummy states corresponding to termination with capital of 0 and 100,
giving them values of 0 and 1 respectively. Show your results graphically, as in Figure 4.3.
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Are your results stable as § — 07 ]

Ezercise 4.10 What is the analog of the value iteration update (4.10) for action values,
qk+1 (37 CL)? U

4.5 Asynchronous Dynamic Programming

A major drawback to the DP methods that we have discussed so far is that they involve
operations over the entire state set of the MDP, that is, they require sweeps of the state
set. If the state set is very large, then even a single sweep can be prohibitively expensive.
For example, the game of backgammon has over 10?° states. Even if we could perform
the value iteration update on a million states per second, it would take over a thousand
years to complete a single sweep.

Asynchronous DP algorithms are in-place iterative DP algorithms that are not organized
in terms of systematic sweeps of the state set. These algorithms update the values of
states in any order whatsoever, using whatever values of other states happen to be
available. The values of some states may be updated several times before the values of
others are updated once. To converge correctly, however, an asynchronous algorithm
must continue to update the values of all the states: it can’t ignore any state after some
point in the computation. Asynchronous DP algorithms allow great flexibility in selecting
states to update.

For example, one version of asynchronous value iteration updates the value, in place, of
only one state, si, on each step, k, using the value iteration update (4.10). If 0 <y < 1,
asymptotic convergence to v, is guaranteed given only that all states occur in the
sequence {s} an infinite number of times (the sequence could even be stochastic). (In
the undiscounted episodic case, it is possible that there are some orderings of updates
that do not result in convergence, but it is relatively easy to avoid these.) Similarly, it
is possible to intermix policy evaluation and value iteration updates to produce a kind
of asynchronous truncated policy iteration. Although the details of this and other more
unusual DP algorithms are beyond the scope of this book, it is clear that a few different
updates form building blocks that can be used flexibly in a wide variety of sweepless DP
algorithms.

Of course, avoiding sweeps does not necessarily mean that we can get away with less
computation. It just means that an algorithm does not need to get locked into any
hopelessly long sweep before it can make progress improving a policy. We can try to
take advantage of this flexibility by selecting the states to which we apply updates so
as to improve the algorithm’s rate of progress. We can try to order the updates to let
value information propagate from state to state in an efficient way. Some states may not
need their values updated as often as others. We might even try to skip updating some
states entirely if they are not relevant to optimal behavior. Some ideas for doing this are
discussed in Chapter 8.

Asynchronous algorithms also make it easier to intermix computation with real-time
interaction. To solve a given MDP, we can run an iterative DP algorithm at the same
time that an agent is actually experiencing the MDP. The agent’s experience can be used
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to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPIL. That is, all have 174
identifiable policies and value functions, with the policy always

evaluation

Vs g

being improved with respect to the value function and the value 7~ greedy(V)
function always being driven toward the value function for the improvement
policy, as suggested by the diagram to the right. If both the .
evaluation process and the improvement process stabilize, that .
is, no longer produce changes, then the value function and policy .
must be optimal. The value function stabilizes only when it .

is consistent with the current policy, and the policy stabilizes T, —*> v,
only when it is greedy with respect to the current value function.

Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.
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One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real v
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

Usey T

= greedy Q)

4.7 Efficiency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite efficient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is k™.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
stonality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create difficulties, but these are inherent difficulties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started



88 Chapter 4: Dynamic Programming

with good initial value functions or policies.

On problems with large state spaces, asynchronous DP methods are often preferred. To
complete even one sweep of a synchronous method requires computation and memory for
every state. For some problems, even this much memory and computation is impractical,
yet the problem is still potentially solvable because relatively few states occur along
optimal solution trajectories. Asynchronous methods and other variations of GPI can be
applied in such cases and may find good or optimal policies much faster than synchronous
methods can.

4.8 Summary

In this chapter we have become familiar with the basic ideas and algorithms of dynamic
programming as they relate to solving finite MDPs. Policy evaluation refers to the (typi-
cally) iterative computation of the value functions for a given policy. Policy improvement
refers to the computation of an improved policy given the value function for that policy.
Putting these two computations together, we obtain policy iteration and wvalue iteration,
the two most popular DP methods. Either of these can be used to reliably compute
optimal policies and value functions for finite MDPs given complete knowledge of the
MDP.

Classical DP methods operate in sweeps through the state set, performing an expected
update operation on each state. Each such operation updates the value of one state
based on the values of all possible successor states and their probabilities of occurring.
Expected updates are closely related to Bellman equations: they are little more than
these equations turned into assignment statements. When the updates no longer result in
any changes in value, convergence has occurred to values that satisfy the corresponding
Bellman equation. Just as there are four primary value functions (v, v, ¢, and gs),
there are four corresponding Bellman equations and four corresponding expected updates.
An intuitive view of the operation of DP updates is given by their backup diagrams.

Insight into DP methods and, in fact, into almost all reinforcement learning methods,
can be gained by viewing them as generalized policy iteration (GPI). GPI s the general idea
of two interacting processes revolving around an approximate policy and an approximate
value function. One process takes the policy as given and performs some form of policy
evaluation, changing the value function to be more like the true value function for the
policy. The other process takes the value function as given and performs some form
of policy improvement, changing the policy to make it better, assuming that the value
function is its value function. Although each process changes the basis for the other,
overall they work together to find a joint solution: a policy and value function that are
unchanged by either process and, consequently, are optimal. In some cases, GPI can be
proved to converge, most notably for the classical DP methods that we have presented in
this chapter. In other cases convergence has not been proved, but still the idea of GPI
improves our understanding of the methods.

It is not necessary to perform DP methods in complete sweeps through the state
set. Asynchronous DP methods are in-place iterative methods that update states in an
arbitrary order, perhaps stochastically determined and using out-of-date information.
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Many of these methods can be viewed as fine-grained forms of GPI.

Finally, we note one last special property of DP methods. All of them update estimates
of the values of states based on estimates of the values of successor states. That is, they
update estimates on the basis of other estimates. We call this general idea bootstrapping.
Many reinforcement learning methods perform bootstrapping, even those that do not
require, as DP requires, a complete and accurate model of the environment. In the next
chapter we explore reinforcement learning methods that do not require a model and do
not bootstrap. In the chapter after that we explore methods that do not require a model
but do bootstrap. These key features and properties are separable, yet can be mixed in
interesting combinations.

Bibliographical and Historical Remarks

The term “dynamic programming” is due to Bellman (1957a), who showed how these
methods could be applied to a wide range of problems. Extensive treatments of DP can
be found in many texts, including Bertsekas (2005, 2012), Bertsekas and Tsitsiklis (1996),
Dreyfus and Law (1977), Ross (1983), White (1969), and Whittle (1982, 1983). Our
interest in DP is restricted to its use in solving MDPs, but DP also applies to other types
of problems. Kumar and Kanal (1988) provide a more general look at DP.

To the best of our knowledge, the first connection between DP and reinforcement
learning was made by Minsky (1961) in commenting on Samuel’s checkers player. In
a footnote, Minsky mentioned that it is possible to apply DP to problems in which
Samuel’s backing-up process can be handled in closed analytic form. This remark may
have misled artificial intelligence researchers into believing that DP was restricted to
analytically tractable problems and therefore largely irrelevant to artificial intelligence.
Andreae (1969b) mentioned DP in the context of reinforcement learning, specifically
policy iteration, although he did not make specific connections between DP and learning
algorithms. Werbos (1977) suggested an approach to approximating DP called “heuristic
dynamic programming” that emphasizes gradient-descent methods for continuous-state
problems (Werbos, 1982, 1987, 1988, 1989, 1992). These methods are closely related to
the reinforcement learning algorithms that we discuss in this book. Watkins (1989) was
explicit in connecting reinforcement learning to DP, characterizing a class of reinforcement
learning methods as “incremental dynamic programming.”

4.1-4 These sections describe well-established DP algorithms that are covered in any of
the general DP references cited above. The policy improvement theorem and the
policy iteration algorithm are due to Bellman (1957a) and Howard (1960). Our
presentation was influenced by the local view of policy improvement taken by
Watkins (1989). Our discussion of value iteration as a form of truncated policy
iteration is based on the approach of Puterman and Shin (1978), who presented a
class of algorithms called modified policy iteration, which includes policy iteration
and value iteration as special cases. An analysis showing how value iteration can
be made to find an optimal policy in finite time is given by Bertsekas (1987).

Iterative policy evaluation is an example of a classical successive approximation
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4.5

4.7

algorithm for solving a system of linear equations. The version of the algorithm
that uses two arrays, one holding the old values while the other is updated, is
often called a Jacobi-style algorithm, after Jacobi’s classical use of this method.
It is also sometimes called a synchronous algorithm because the effect is as if all
the values are updated at the same time. The second array is needed to simulate
this parallel computation sequentially. The in-place version of the algorithm
is often called a Gauss—Seidel-style algorithm after the classical Gauss—Seidel
algorithm for solving systems of linear equations. In addition to iterative policy
evaluation, other DP algorithms can be implemented in these different versions.
Bertsekas and Tsitsiklis (1989) provide excellent coverage of these variations and
their performance differences.

Asynchronous DP algorithms are due to Bertsekas (1982, 1983), who also called
them distributed DP algorithms. The original motivation for asynchronous
DP was its implementation on a multiprocessor system with communication
delays between processors and no global synchronizing clock. These algorithms
are extensively discussed by Bertsekas and Tsitsiklis (1989). Jacobi-style and
Gauss—Seidel-style DP algorithms are special cases of the asynchronous version.
Williams and Baird (1990) presented DP algorithms that are asynchronous at a
finer grain than the ones we have discussed: the update operations themselves
are broken into steps that can be performed asynchronously.

This section, written with the help of Michael Littman, is based on Littman,
Dean, and Kaelbling (1995). The phrase “curse of dimensionality” is due to
Bellman (1957a).

Foundational work on the linear programming approach to reinforcement learning
was done by Daniela de Farias (de Farias, 2002; de Farias and Van Roy, 2003).
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Monte Carlo Methods

In this chapter we consider our first learning methods for estimating value functions and
discovering optimal policies. Unlike the previous chapter, here we do not assume complete
knowledge of the environment. Monte Carlo methods require only ezperience—sample
sequences of states, actions, and rewards from actual or simulated interaction with an
environment. Learning from actual experience is striking because it requires no prior
knowledge of the environment’s dynamics, yet can still attain optimal behavior. Learning
from simulated experience is also powerful. Although a model is required, the model need
only generate sample transitions, not the complete probability distributions of all possible
transitions that is required for dynamic programming (DP). In surprisingly many cases it
is easy to generate experience sampled according to the desired probability distributions,
but infeasible to obtain the distributions in explicit form.

Monte Carlo methods are ways of solving the reinforcement learning problem based on
averaging sample returns. To ensure that well-defined returns are available, here we define
Monte Carlo methods only for episodic tasks. That is, we assume experience is divided
into episodes, and that all episodes eventually terminate no matter what actions are
selected. Only on the completion of an episode are value estimates and policies changed.
Monte Carlo methods can thus be incremental in an episode-by-episode sense, but not in
a step-by-step (online) sense. The term “Monte Carlo” is often used more broadly for
any estimation method whose operation involves a significant random component. Here
we use it specifically for methods based on averaging complete returns (as opposed to
methods that learn from partial returns, considered in the next chapter).

Monte Carlo methods sample and average returns for each state—action pair much like
the bandit methods we explored in Chapter 2 sample and average rewards for each action.
The main difference is that now there are multiple states, each acting like a different
bandit problem (like an associative-search or contextual bandit) and the different bandit
problems are interrelated. That is, the return after taking an action in one state depends
on the actions taken in later states in the same episode. Because all the action selections
are undergoing learning, the problem becomes nonstationary from the point of view of
the earlier state.

91
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To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v, and ¢, for a fixed arbitrary policy 7) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v, (s), the value of a state s under policy m,
given a set of episodes obtained by following 7 and passing through s. Each occurrence
of state s in an episode is called a wvisit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v,(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
different theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for S; having occurred earlier in the episode.

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1, 51, A1, R2,...,S7—1,Ar—1, Rr
G+0
Loop for each step of episode, t =T—-1,T7—-2,...,0:
G+ vG+ Ryt
Unless S: appears in So, S1, ..., St—1:
Append G to Returns(St)
V(S¢) < average(Returns(St))
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Both first-visit MC and every-visit MC converge to v.(s) as the number of visits (or
first visits) to s goes to infinity. This is easy to see for the case of first-visit MC. In
this case each return is an independent, identically distributed estimate of v, (s) with
finite variance. By the law of large numbers the sequence of averages of these estimates
converges to their expected value. Each average is itself an unbiased estimate, and the
standard deviation of its error falls as 1/4/n, where n is the number of returns averaged.
Every-visit MC is less straightforward, but its estimates also converge quadratically to
vr(8) (Singh and Sutton, 1996).

The use of Monte Carlo methods is best illustrated through an example.

Example 5.1: Blackjack The object of the popular casino card game of blackjack is to
obtain cards the sum of whose numerical values is as great as possible without exceeding
21. All face cards count as 10, and an ace can count either as 1 or as 11. We consider
the version in which each player competes independently against the dealer. The game
begins with two cards dealt to both dealer and player. One of the dealer’s cards is face
up and the other is face down. If the player has 21 immediately (an ace and a 10-card),
it is called a natural. He then wins unless the dealer also has a natural, in which case the
game is a draw. If the player does not have a natural, then he can request additional
cards, one by one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes
bust, he loses; if he sticks, then it becomes the dealer’s turn. The dealer hits or sticks
according to a fixed strategy without choice: he sticks on any sum of 17 or greater, and
hits otherwise. If the dealer goes bust, then the player wins; otherwise, the outcome—win,
lose, or draw—is determined by whose final sum is closer to 21.

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of
blackjack is an episode. Rewards of +1, —1, and 0 are given for winning, losing, and
drawing, respectively. All rewards within a game are zero, and we do not discount (y = 1);
therefore these terminal rewards are also the returns. The player’s actions are to hit or
to stick. The states depend on the player’s cards and the dealer’s showing card. We
assume that cards are dealt from an infinite deck (i.e., with replacement) so that there is
no advantage to keeping track of the cards already dealt. If the player holds an ace that
he could count as 11 without going bust, then the ace is said to be usable. In this case
it is always counted as 11 because counting it as 1 would make the sum 11 or less, in
which case there is no decision to be made because, obviously, the player should always
hit. Thus, the player makes decisions on the basis of three variables: his current sum
(12-21), the dealer’s one showing card (ace—10), and whether or not he holds a usable
ace. This makes for a total of 200 states.

Consider the policy that sticks if the player’s sum is 20 or 21, and otherwise hits. To
find the state-value function for this policy by a Monte Carlo approach, one simulates
many blackjack games using the policy and averages the returns following each state.
In this way, we obtained the estimates of the state-value function shown in Figure 5.1.
The estimates for states with a usable ace are less certain and less regular because these
states are less common. In any event, after 500,000 games the value function is very well
approximated.
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After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation. |

Ezercise 5.1 Consider the diagrams on the right in Figure 5.1. Why does the estimated
value function jump up for the last two rows in the rear? Why does it drop off for the
whole last row on the left? Why are the frontmost values higher in the upper diagrams
than in the lower? |

Ezercise 5.2 Suppose every-visit MC was used instead of first-visit MC on the blackjack
task. Would you expect the results to be very different? Why or why not? ]

Although we have complete knowledge of the environment in the blackjack task, it
would not be easy to apply DP methods to compute the value function. DP methods
require the distribution of next events—in particular, they require the environments
dynamics as given by the four-argument function p—and it is not easy to determine
this for blackjack. For example, suppose the player’s sum is 14 and he chooses to stick.
What is his probability of terminating with a reward of +1 as a function of the dealer’s
showing card? All of the probabilities must be computed before DP can be applied, and
such computations are often complex and error-prone. In contrast, generating the sample
games required by Monte Carlo methods is easy. This is the case surprisingly often; the
ability of Monte Carlo methods to work with sample episodes alone can be a significant
advantage even when one has complete knowledge of the environment’s dynamics.

Can we generalize the idea of backup diagrams to Monte Carlo algorithms? The
general idea of a backup diagram is to show at the top the root node to be updated and
to show below all the transitions and leaf nodes whose rewards and estimated values
contribute to the update. For Monte Carlo estimation of v,, the root is a state node, and
below it is the entire trajectory of transitions along a particular single episode, ending
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at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled ?
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These I
differences in the diagrams accurately reflect the fundamental differences between
the algorithms. ?
An important fact about Monte Carlo methods is that the estimates for each hd
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter. I
In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

Example 5.2: Soap Bubble Suppose a wire —_— — —
frame forming a closed loop is dunked in soapy r/ ‘
water to form a soap surface or bubble conform- >

ing at its edges to the wire frame. If the geom- =

etry of the wire frame is irregular but known,
how can you compute the shape of the surface? i '
The shape has the property that the total force |
on each point exerted by neighboring points is .
zero (or else the shape would change). This
means that the surface’s height at any point is |[/#
the average of its heights at points in a small A bubble on a wire loop.

circle around that point. In addition, the sur- fyom Hersh and Griego (1969). Reproduced with
face must meet at its boundaries with the wire permission. ©1969 Scientific American, a divi-
frame. The usual approach to problems of this sion of Nature America, Inc. All rights reserved.
kind is to put a grid over the area covered by

the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the
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surface at a point by simply averaging the boundary heights of many walks started at
the point. If one is interested in only the value at one point, or any fixed small set of
points, then this Monte Carlo method can be far more efficient than the iterative method
based on local consistency. ]

5.2 Monte Carlo Estimation of Action Values

If a model is not available, then it is particularly useful to estimate action values (the
values of state—action pairs) rather than state values. With a model, state values alone are
sufficient to determine a policy; one simply looks ahead one step and chooses whichever
action leads to the best combination of reward and next state, as we did in the chapter on
DP. Without a model, however, state values alone are not sufficient. One must explicitly
estimate the value of each action in order for the values to be useful in suggesting a policy.
Thus, one of our primary goals for Monte Carlo methods is to estimate g.. To achieve
this, we first consider the policy evaluation problem for action values.

The policy evaluation problem for action values is to estimate ¢, (s, a), the expected
return when starting in state s, taking action a, and thereafter following policy w. The
Monte Carlo methods for this are essentially the same as just presented for state values,
except now we talk about visits to a state—action pair rather than to a state. A state—
action pair s, a is said to be visited in an episode if ever the state s is visited and action
a is taken in it. The every-visit MC method estimates the value of a state—action pair
as the average of the returns that have followed all the visits to it. The first-visit MC
method averages the returns following the first time in each episode that the state was
visited and the action was selected. These methods converge quadratically, as before, to
the true expected values as the number of visits to each state—action pair approaches
infinity.

The only complication is that many state—action pairs may never be visited. If 7 is
a deterministic policy, then in following 7 one will observe returns only for one of the
actions from each state. With no returns to average, the Monte Carlo estimates of the
other actions will not improve with experience. This is a serious problem because the
purpose of learning action values is to help in choosing among the actions available in
each state. To compare alternatives we need to estimate the value of all the actions from
each state, not just the one we currently favor.

This is the general problem of maintaining exploration, as discussed in the context
of the k-armed bandit problem in Chapter 2. For policy evaluation to work for action
values, we must assure continual exploration. One way to do this is by specifying that
the episodes start in a state—action pair, and that every pair has a nonzero probability of
being selected as the start. This guarantees that all state-action pairs will be visited an
infinite number of times in the limit of an infinite number of episodes. We call this the
assumption of exploring starts.

The assumption of exploring starts is sometimes useful, but of course it cannot be
relied upon in general, particularly when learning directly from actual interaction with an
environment. In that case the starting conditions are unlikely to be so helpful. The most
common alternative approach to assuring that all state-action pairs are encountered is
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to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Ezercise 5.3 What is the backup diagram for Monte Carlo estimation of ¢, 7 |

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration
(GPI). In GPI one maintains both an approximate policy and evaluation

an approximate value function. The value function is repeatedly /Q;N
altered to more closely approximate the value function for the

current policy, and the policy is repeatedly improved with respect

to the current value function, as suggested by the diagram to T Q
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach improvement
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy mg and ending with the optimal policy
and optimal action-value function:

7~ greedy(Q)

B 1 E I E I E
7T0—>q7r0—)71'1 —)qﬂ—l—>ﬂ'2—>"'—>’ﬂ'* — (Qx,

where — denotes a complete policy evaluation and — denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each ¢, exactly, for arbitrary my.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function ¢, the corresponding
greedy policy is the one that, for each s € 8, deterministically chooses an action with
maximal action-value:

m(s) = argmgxq(s,a). (5.1)

Policy improvement then can be done by constructing each 71 as the greedy policy
with respect to ¢,,. The policy improvement theorem (Section 4.2) then applies to 7y
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and 741 because, for all s € 8,
qﬂk(svwk-i-l(s)) = qﬁk(s,argmaxqﬁk(s,a))
a
= maxqr,(s,a)
a

Gy (5, 71(5))

Uz, ().

(A\VANAYS

As we discussed in the previous chapter, the theorem assures us that each 71 is uniformly
better than 7y, or just as good as 7, in which case they are both optimal policies. This
in turn assures us that the overall process converges to the optimal policy and optimal
value function. In this way Monte Carlo methods can be used to find optimal policies
given only sample episodes and no other knowledge of the environment’s dynamics.

We made two unlikely assumptions above in order to easily obtain this guarantee of
convergence for the Monte Carlo method. One was that the episodes have exploring
starts, and the other was that policy evaluation could be done with an infinite number of
episodes. To obtain a practical algorithm we will have to remove both assumptions. We
postpone consideration of the first assumption until later in this chapter.

For now we focus on the assumption that policy evaluation operates on an infinite
number of episodes. This assumption is relatively easy to remove. In fact, the same issue
arises even in classical DP methods such as iterative policy evaluation, which also converge
only asymptotically to the true value function. In both DP and Monte Carlo cases there
are two ways to solve the problem. One is to hold firm to the idea of approximating g,
in each policy evaluation. Measurements and assumptions are made to obtain bounds
on the magnitude and probability of error in the estimates, and then sufficient steps are
taken during each policy evaluation to assure that these bounds are sufficiently small.
This approach can probably be made completely satisfactory in the sense of guaranteeing
correct convergence up to some level of approximation. However, it is also likely to require
far too many episodes to be useful in practice on any but the smallest problems.

There is a second approach to avoiding the infinite number of episodes nominally
required for policy evaluation, in which we give up trying to complete policy evaluation
before returning to policy improvement. On each evaluation step we move the value
function toward ¢, , but we do not expect to actually get close except over many steps.
We used this idea when we first introduced the idea of GPI in Section 4.6. One extreme
form of the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of value
iteration is even more extreme; there we alternate between improvement and evaluation
steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation and
improvement on an episode-by-episode basis. After each episode, the observed returns
are used for policy evaluation, and then the policy is improved at all the states visited in
the episode. A complete simple algorithm along these lines, which we call Monte Carlo
ES, for Monte Carlo with Exploring Starts, is given in pseudocode in the box on the next

page.
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Monte Carlo ES (Exploring Starts), for estimating 7 ~ 7,

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8§, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sy) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ay, following 7: Sy, Ag, Ry,...,S7—1,Ar_1, RT
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G+ vG + Ryyq
Unless the pair Sy, A; appears in Sy, Ag, S1, A1 ...,S¢—1,As_1:
Append G to Returns(St, At)
Q(St, Ay) < average(Returns(S, At))
7(Sy) + argmax, Q(S,a)

FEzercise 5.4 The pseudocode for Monte Carlo ES is inefficient because, for each state—
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more efficient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state—action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ([l

In Monte Carlo ES, all the returns for each state—action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state—action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.
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Figure 5.2: The optimal policy and state-value function for blackjack, found by Monte Carlo
ES. The state-value function shown was computed from the action-value function found by
Monte Carlo ES. |

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way to
ensure that all actions are selected infinitely often is for the agent to continue to select
them. There are two approaches to ensuring this, resulting in what we call on-policy
methods and off-policy methods. On-policy methods attempt to evaluate or improve the
policy that is used to make decisions, whereas off-policy methods evaluate or improve
a policy different from that used to generate the data. The Monte Carlo ES method
developed above is an example of an on-policy method. In this section we show how an
on-policy Monte Carlo control method can be designed that does not use the unrealistic
assumption of exploring starts. Off-policy methods are considered in the next section.
In on-policy control methods the policy is generally soft, meaning that 7(a|s) > 0
for all s € 8§ and all a € A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms for
this. The on-policy method we present in this section uses e-greedy policies, meaning
that most of the time they choose an action that has maximal estimated action value,
but with probability € they instead select an action at random. That is, all nongreedy
actions are given the minimal probability of selection, Mjis)l’ and the remaining bulk of
the probability, 1 — ¢ + Miis)l’ is given to the greedy action. The e-greedy policies are
£

examples of e-soft policies, defined as policies for which 7(a|s) > AT for all states and

actions, for some € > 0. Among e-soft policies, e-greedy policies are in some sense those
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that are closest to greedy.

The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte
Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an e-greedy
policy. For any e-soft policy, 7, any e-greedy policy with respect to ¢, is guaranteed to
be better than or equal to . The complete algorithm is given in the box below.

On-policy first-visit MC control (for e-soft policies), estimates 7w ~ 7,

Algorithm parameter: small € > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,7—-2,...,0:
G+ vG + Ryyq
Unless the pair Sy, A; appears in Sy, Ag, S1,A1...,S:—1,A¢_1:
Append G to Returns(St, Az)
Q(St, Ap) < average(Returns(St, At))
A* + argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1—cec+¢e/|A(S; if a = A*
mlalSe) « { A A

That any e-greedy policy with respect to ¢, is an improvement over any e-soft policy
7 is assured by the policy improvement theorem. Let 7’ be the e-greedy policy. The
conditions of the policy improvement theorem apply because for any s € S:

gr(s,7'(s)) = D 7(als)dn(s,a)

ae
— A za:qﬂ(s,a) + (1—5)m3xqﬂ(s,a) (5.2)
€ m(als) — \Afs)|

(the sum is a weighted average with nonnegative weights summing to 1, and as such it
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must be less than or equal to the largest number averaged)

€ €
=A@ 2D g e (50) + 3 nlals)an(sio)

a

= vg(s).

Thus, by the policy improvement theorem, ' > 7 (i.e., v/ (8) > vg(s), for all s € 8). We
now prove that equality can hold only when both 7’ and 7 are optimal among the e-soft
policies, that is, when they are better than or equal to all other e-soft policies.

Consider a new environment that is just like the original environment, except with the
requirement that policies be e-soft “moved inside” the environment. The new environment
has the same action and state set as the original and behaves as follows. If in state s
and taking action a, then with probability 1 — ¢ the new environment behaves exactly
like the old environment. With probability € it repicks the action at random, with equal
probabilities, and then behaves like the old environment with the new, random action.
The best one can do in this new environment with general policies is the same as the
best one could do in the original environment with e-soft policies. Let v, and ¢, denote
the optimal value functions for the new environment. Then a policy 7 is optimal among
e-soft policies if and only if v, = v,. From the definition of v, we know that it is the
unique solution to

T = (=m0 + e S a s

= (1-¢) mngp(s’,Hs, a) [r + 'y'?}*(s')}

s',r

+ \A?s)| ;;;)(8’7“5,@)[r—i—’yﬁ*(s')]

When equality holds and the e-soft policy 7 is no longer improved, then we also know,
from (5.2), that

’UW(S) = (1 - 5) m{?XQTr(Sva) + m ;q‘n(saco

= (1-¢) mngp(s', r|s,a) {r + 'yvﬂ(s’)}

s'r

Ve 2 Zp( rls o) |7+ 0e(s)].

However, this equation is the same as the previous one, except for the substitution of v,
for v,. Because v, is the unique solution, it must be that v, = v,.

In essence, we have shown in the last few pages that policy iteration works for e-soft
policies. Using the natural notion of greedy policy for e-soft policies, one is assured of
improvement on every step, except when the best policy has been found among the e-soft
policies. This analysis is independent of how the action-value functions are determined
at each stage, but it does assume that they are computed exactly. This brings us to
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roughly the same point as in the previous section. Now we only achieve the best policy
among the e-soft policies, but on the other hand, we have eliminated the assumption of
exploring starts.

5.5 Off-policy Prediction via Importance Sampling

All learning control methods face a dilemma: They seek to learn action values conditional
on subsequent optimal behavior, but they need to behave non-optimally in order to
explore all actions (to find the optimal actions). How can they learn about the optimal
policy while behaving according to an exploratory policy? The on-policy approach in the
preceding section is actually a compromise—it learns action values not for the optimal
policy, but for a near-optimal policy that still explores. A more straightforward approach
is to use two policies, one that is learned about and that becomes the optimal policy, and
one that is more exploratory and is used to generate behavior. The policy being learned
about is called the target policy, and the policy used to generate behavior is called the
behavior policy. In this case we say that learning is from data “off” the target policy, and
the overall process is termed off-policy learning.

Throughout the rest of this book we consider both on-policy and off-policy methods.
On-policy methods are generally simpler and are considered first. Off-policy methods
require additional concepts and notation, and because the data is due to a different policy,
off-policy methods are often of greater variance and are slower to converge. On the other
hand, off-policy methods are more powerful and general. They include on-policy methods
as the special case in which the target and behavior policies are the same. Off-policy
methods also have a variety of additional uses in applications. For example, they can
often be applied to learn from data generated by a conventional non-learning controller,
or from a human expert. Off-policy learning is also seen by some as key to learning
multi-step predictive models of the world’s dynamics (see Section 17.2; Sutton, 2009;
Sutton et al., 2011).

In this section we begin the study of off-policy methods by considering the prediction
problem, in which both target and behavior policies are fixed. That is, suppose we wish
to estimate v, or g, but all we have are episodes following another policy b, where
b # 7. In this case, 7 is the target policy, b is the behavior policy, and both policies are
considered fixed and given.

In order to use episodes from b to estimate values for m, we require that every action
taken under 7 is also taken, at least occasionally, under b. That is, we require that
m(als) > 0 implies b(a|s) > 0. This is called the assumption of coverage. It follows
from coverage that b must be stochastic in states where it is not identical to w. The
target policy m, on the other hand, may be deterministic, and, in fact, this is a case
of particular interest in control applications. In control, the target policy is typically
the deterministic greedy policy with respect to the current estimate of the action-value
function. This policy becomes a deterministic optimal policy while the behavior policy
remains stochastic and more exploratory, for example, an e-greedy policy. In this section,
however, we consider the prediction problem, in which 7 is unchanging and given.

Almost all off-policy methods utilize importance sampling, a general technique for
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estimating expected values under one distribution given samples from another. We apply
importance sampling to off-policy learning by weighting returns according to the relative
probability of their trajectories occurring under the target and behavior policies, called
the importance-sampling ratio. Given a starting state S, the probability of the subsequent
state—action trajectory, As, Sty1, Att1, ..., 97, occurring under any policy 7 is

Pr{As, Sey1, Ay, .., 87 | Se, Apr—1 ~ 7}

T(A¢|St)p(Se41] St Ae)m(Ae 1| Se1) - - - p(ST| ST—1, AT—1)
T—1

= T #(ArISk)p(Skr1 Sk, Av),
k=t

where p here is the state-transition probability function defined by (3.4). Thus, the relative
probability of the trajectory under the target and behavior policies (the importance-
sampling ratio) is

- HZ:_tl 7 (Ak|Sk)p(Sk+1[ Sk, Ax) = 7(Ag|Sk)
PtT—1 = g - H TGS (5.3)
pe D(AklSk)P(Ski1|Sk, Ar) sy 0(Ak[Sk)

Although the trajectory probabilities depend on the MDP’s transition probabilities, which
are generally unknown, they appear identically in both the numerator and denominator,
and thus cancel. The importance sampling ratio ends up depending only on the two
policies and the sequence, not on the MDP.

Recall that we wish to estimate the expected returns (values) under the target policy,
but all we have are returns G; due to the behavior policy. These returns have the wrong
expectation E[G|S:=s] = vp(s) and so cannot be averaged to obtain v,. This is where
importance sampling comes in. The ratio p;.p—1 transforms the returns to have the right
expected value:

Elprr-1Gt | St=3] = vz (s). (5.4)

Now we are ready to give a Monte Carlo algorithm that averages returns from a batch
of observed episodes following policy b to estimate v, (s). It is convenient here to number
time steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at time
t = 101. This enables us to use time-step numbers to refer to particular steps in particular
episodes. In particular, we can define the set of all time steps in which state s is visited,
denoted T(s). This is for an every-visit method; for a first-visit method, J(s) would only
include time steps that were first visits to s within their episodes. Also, let T'(¢) denote
the first time of termination following time ¢, and G; denote the return after ¢ up through
T(t). Then {G¢}iecq(s) are the returns that pertain to state s, and {ptiT(f/)*l}teT(s) are
the corresponding importance-sampling ratios. To estimate v, (s), we simply scale the
returns by the ratios and average the results:

N Zte:r(s) pt:T(t)—th

V(s) = (o)) (5.5)
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When importance sampling is done as a simple average in this way it is called ordinary
importance sampling.

An important alternative is weighted tmportance sampling, which uses a weighted
average, defined as

& PeT(t)-1G
V(s) = ety Pt 1Gr (5.6)
Zte‘j’(s) Pt:T(t)—1

or zero if the denominator is zero. To understand these two varieties of importance
sampling, consider the estimates of their first-visit methods after observing a single return
from state s. In the weighted-average estimate, the ratio py.p(;)—1 for the single return
cancels in the numerator and denominator, so that the estimate is equal to the observed
return independent of the ratio (assuming the ratio is nonzero). Given that this return
was the only one observed, this is a reasonable estimate, but its expectation is v, (s) rather
than v,(s), and in this statistical sense it is biased. In contrast, the first-visit version
of the ordinary importance-sampling estimator (5.5) is always v, (s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the
trajectory observed is ten times as likely under the target policy as under the behavior
policy. In this case the ordinary importance-sampling estimate would be ten times the
observed return. That is, it would be quite far from the observed return even though the
episode’s trajectory is considered very representative of the target policy.

Formally, the difference between the first-visit methods of the two kinds of importance
sampling is expressed in their biases and variances. Ordinary importance sampling is
unbiased whereas weighted importance sampling is biased (though the bias converges
asymptotically to zero). On the other hand, the variance of ordinary importance sampling
is in general unbounded because the variance of the ratios can be unbounded, whereas in
the weighted estimator the largest weight on any single return is one. In fact, assuming
bounded returns, the variance of the weighted importance-sampling estimator converges
to zero even if the variance of the ratios themselves is infinite (Precup, Sutton, and
Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower
variance and is strongly preferred. Nevertheless, we will not totally abandon ordinary
importance sampling as it is easier to extend to the approximate methods using function
approximation that we explore in the second part of this book.

The every-visit methods for ordinary and weighed importance sampling are both biased,
though, again, the bias falls asymptotically to zero as the number of samples increases.
In practice, every-visit methods are often preferred because they remove the need to keep
track of which states have been visited and because they are much easier to extend to
approximations. A complete every-visit MC algorithm for off-policy policy evaluation
using weighted importance sampling is given in the next section on page 110.

Exercise 5.5 Consider an MDP with a single nonterminal state and a single action
that transitions back to the nonterminal state with probability p and transitions to the
terminal state with probability 1—p. Let the reward be +1 on all transitions, and let
v=1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What
are the first-visit and every-visit estimators of the value of the nonterminal state? O
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Example 5.4: Off-policy Estimation of a Blackjack State Value We applied
both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state (Example 5.1) from off-policy data. Recall that one of the advantages
of Monte Carlo methods is that they can be used to evaluate a single state without
forming estimates for any other states. In this example, we evaluated the state in which
the dealer is showing a deuce, the sum of the player’s cards is 13, and the player has
a usable ace (that is, the player holds an ace and a deuce, or equivalently three aces).
The data was generated by starting in this state then choosing to hit or stick at random
with equal probability (the behavior policy). The target policy was to stick only on
a sum of 20 or 21, as in Example 5.1. The value of this state under the target policy
is approximately —0.27726 (this was determined by separately generating one-hundred
million episodes using the target policy and averaging their returns). Both off-policy
methods closely approximated this value after 1000 off-policy episodes using the random
policy. To make sure they did this reliably, we performed 100 independent runs, each
starting from estimates of zero and learning for 10,000 episodes. Figure 5.3 shows the
resultant learning curves—the squared error of the estimates of each method as a function
of number of episodes, averaged over the 100 runs. The error approaches zero for both
algorithms, but the weighted importance-sampling method has much lower error at the
beginning, as is typical in practice.

5rF

Mean
square
error

(average over [
100 runs)

Weighted importance sampling

OF, . : — — ;
0 10 100 1000 10,000
Episodes (log scale)

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from off-policy episodes. |

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will
typically have infinite variance, and thus unsatisfactory convergence properties, whenever
the scaled returns have infinite variance—and this can easily happen in off-policy learning
when trajectories contain loops. A simple example is shown inset in Figure 5.4. There is
only one nonterminal state s and two actions, right and left. The right action causes a
deterministic transition to termination, whereas the left action transitions, with probability
0.9, back to s or, with probability 0.1, on to termination. The rewards are 4+1 on the
latter transition and otherwise zero. Consider the target policy that always selects left.
All episodes under this policy consist of some number (possibly zero) of transitions back
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to s followed by termination with a reward and return of +1. Thus the value of s under
the target policy is 1 (7 = 1). Suppose we are estimating this value from off-policy data
using the behavior policy that selects right and left with equal probability.

m(left]s) =1

b(left]s) — %

2be T
Monte-Carlo \

estimate of
vx(8) with
ordinary
importance |
sampling
(ten runs)

1 10 100 1000 10,000 100.000 1,000,000 10,000,000  100.000,000

Episodes (log scale)

Figure 5.4: Ordinary importance sampling produces surprisingly unstable estimates on the
one-state MDP shown inset (Example 5.5). The correct estimate here is 1 (y = 1), and, even
though this is the expected value of a sample return (after importance sampling), the variance
of the samples is infinite, and the estimates do not converge to this value. These results are for
off-policy first-visit MC.

The lower part of Figure 5.4 shows ten independent runs of the first-visit MC algorithm
using ordinary importance sampling. Even after millions of episodes, the estimates fail
to converge to the correct value of 1. In contrast, the weighted importance-sampling
algorithm would give an estimate of exactly 1 forever after the first episode that ended
with the left action. All returns not equal to 1 (that is, ending with the right action)
would be inconsistent with the target policy and thus would have a p;.7+)—; of zero and
contribute neither to the numerator nor denominator of (5.6). The weighted importance-
sampling algorithm produces a weighted average of only the returns consistent with the
target policy, and all of these would be exactly 1.

We can verify that the variance of the importance-sampling-scaled returns is infinite
in this example by a simple calculation. The variance of any random variable X is the
expected value of the deviation from its mean X, which can be written

VarlX] = E[(X - X)*| =E[X? - 2XX + X?] =E[X?] - X2,

Thus, if the mean is finite, as it is in our case, the variance is infinite if and only if the
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expectation of the square of the random variable is infinite. Thus, we need only show
that the expected square of the importance-sampling-scaled return is infinite:

2
H At\St
b(AS) ¢

To compute this expectation, we break it down into cases based on episode length and
termination. First note that, for any episode ending with the right action, the importance
sampling ratio is zero, because the target policy would never take this action; these
episodes thus contribute nothing to the expectation (the quantity in parenthesis will be
zero) and can be ignored. We need only consider episodes that involve some number
(possibly zero) of left actions that transition back to the nonterminal state, followed by a
left action transitioning to termination. All of these episodes have a return of 1, so the
G factor can be ignored. To get the expected square we need only consider each length
of episode, multiplying the probability of the episode’s occurrence by the square of its
importance-sampling ratio, and add these up:

2
1 1 .
=3 -0.1 <05> (the length 1 episode)
2
1 1 1 1
+ 3 -0.9- 3 0.1 <O5 05) (the length 2 episode)
1 1 1 1 1 1
--09---09- =01 ——— the length 3 episod
+2 2 2 (050505) (the length 3 episode)
+
o
:0.120.9’“-2’“-2: 02) 1.8" = oc. n
k=0

Exercise 5.6 What is the equation analogous to (5.6) for action values Q(s, a) instead of
state values V(s), again given returns generated using b? (|

Exercise 5.7 In learning curves such as those shown in Figure 5.3 error generally decreases
with training, as indeed happened for the ordinary importance-sampling method. But for
the weighted importance-sampling method error first increased and then decreased. Why
do you think this happened? O

Ezxercise 5.8 The results with Example 5.5 and shown in Figure 5.4 used a first-visit MC
method. Suppose that instead an every-visit MC method was used on the same problem.
Would the variance of the estimator still be infinite? Why or why not? ]
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5.6 Incremental Implementation

Monte Carlo prediction methods can be implemented incrementally, on an episode-by-
episode basis, using extensions of the techniques described in Chapter 2 (Section 2.4).
Whereas in Chapter 2 we averaged rewards, in Monte Carlo methods we average returns.
In all other respects exactly the same methods as used in Chapter 2 can be used for on-
policy Monte Carlo methods. For off-policy Monte Carlo methods, we need to separately
consider those that use ordinary importance sampling and those that use weighted
importance sampling.

In ordinary importance sampling, the returns are scaled by the importance sampling
ratio py.p)—1 (5.3), then simply averaged, as in (5.5). For these methods we can again
use the incremental methods of Chapter 2, but using the scaled returns in place of
the rewards of that chapter. This leaves the case of off-policy methods using weighted
importance sampling. Here we have to form a weighted average of the returns, and a
slightly different incremental algorithm is required.

Suppose we have a sequence of returns Gy, Ga, ..., G,_1, all starting in the same state
and each with a corresponding random weight W; (e.g., Wi = p;,.7¢,)—1). We wish to
form the estimate

n—1
w=1 WGy

k=1 Wi

and keep it up-to-date as we obtain a single additional return G,,. In addition to keeping
track of V,,, we must maintain for each state the cumulative sum C), of the weights given
to the first n returns. The update rule for V,, is

Wn

Vsl =V,
+1 + c.

{Gn _ Vn}, n>1, (5.8)

and
Cn+1 = Cn + Wn+17

where Cyp = 0 (and V; is arbitrary and thus need not be specified). The box on the
next page contains a complete episode-by-episode incremental algorithm for Monte Carlo
policy evaluation. The algorithm is nominally for the off-policy case, using weighted
importance sampling, but applies as well to the on-policy case just by choosing the
target and behavior policies as the same (in which case (7 = b), W is always 1). The
approximation @) converges to ¢, (for all encountered state—action pairs) while actions
are selected according to a potentially different policy, b.

Ezercise 5.9 Modify the algorithm for first-visit MC policy evaluation (Section 5.1) to
use the incremental implementation for sample averages described in Section 2.4. O

Ezercise 5.10 Derive the weighted-average update rule (5.8) from (5.7). Follow the
pattern of the derivation of the unweighted rule (2.3). O
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Off-policy MC prediction (policy evaluation) for estimating Q = ¢,

Input: an arbitrary target policy 7

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) <0

Loop forever (for each episode):

b + any policy with coverage of 7

Generate an episode following b: Sy, Ag, Ry,...,S7_1,Ar_1, Rt

G0

W1

Loop for each step of episode, t =T —1,T7—2,...,0, while W # 0:
G <~ vG + Ry
C(St, At) — C(St, At) + W
Q(St, Ar) < Q(St, Ar) + % (G — Q(S:, Ay)]

m(A¢|St)
W Wiiaisg

5.7 Off-policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods
we consider in this book: off-policy methods. Recall that the distinguishing feature of
on-policy methods is that they estimate the value of a policy while using it for control.
In off-policy methods these two functions are separated. The policy used to generate
behavior, called the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, called the target policy. An advantage of this separation is
that the target policy may be deterministic (e.g., greedy), while the behavior policy can
continue to sample all possible actions.

Off-policy Monte Carlo control methods use one of the techniques presented in the
preceding two sections. They follow the behavior policy while learning about and
improving the target policy. These techniques require that the behavior policy has a
nonzero probability of selecting all actions that might be selected by the target policy
(coverage). To explore all possibilities, we require that the behavior policy be soft (i.e.,
that it select all actions in all states with nonzero probability).

The box on the next page shows an off-policy Monte Carlo control method, based on
GPI and weighted importance sampling, for estimating 7, and g,. The target policy
T = T, is the greedy policy with respect to (), which is an estimate of ¢,. The behavior
policy b can be anything, but in order to assure convergence of 7 to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This can be
assured by choosing b to be e-soft. The policy 7 converges to optimal at all encountered
states even though actions are selected according to a different soft policy b, which may
change between or even within episodes.
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Off-policy MC control, for estimating = ~ .,

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) «+ 0
7(s) < argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b + any soft policy
Generate an episode using b: Sy, Ag, R1,...,57_1,Ar_1, Rr
G<+0
W1
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ vG+ Ry
CY(St7 At) — C(St, At) + W
Q(St, Ar) + Q(Si, Ar) + orgray [G — Q(Sh, Ar)]
7(St) < argmax, Q(St,a)  (with ties broken consistently)
If Ay # 7(S;) then exit inner Loop (proceed to next episode)

1
W Weaisy

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insufficient
experience with off-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
difference learning, the algorithmic idea developed in the next chapter. Alternatively, if ~
is less than 1, then the idea developed in the next section may also help significantly.

Ezercise 5.11 In the boxed algorithm for off-policy MC control, you may have been

expecting the W update to have involved the importance-sampling ratio Z((::ttllgtt)) , but

instead it involves b(Tllst)' Why is this nevertheless correct? O

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run off the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, —1, or 0 in each step, for a total of
nine (3 x 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are —1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the
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Finish
line

Finish
line

Starting line Starting line

Figure 5.5: A couple of right turns for the racetrack task.

episode continues. Before updating the car’s location at each time step, check to see if
the projected path of the car intersects the track boundary. If it intersects the finish line,
the episode ends; if it intersects anywhere else, the car is considered to have hit the track
boundary and is sent back to the starting line. To make the task more challenging, with
probability 0.1 at each time step the velocity increments are both zero, independently of
the intended increments. Apply a Monte Carlo control method to this task to compute
the optimal policy from each starting state. Exhibit several trajectories following the
optimal policy (but turn the noise off for these trajectories). (|

5.8 *Discounting-aware Importance Sampling

The off-policy methods that we have considered so far are based on forming importance-
sampling weights for returns considered as unitary wholes, without taking into account
the returns’ internal structures as sums of discounted rewards. We now briefly consider
cutting-edge research ideas for using this structure to significantly reduce the variance of
off-policy estimators.

For example, consider the case where episodes are long and -y is significantly less than
1. For concreteness, say that episodes last 100 steps and that v = 0. The return from
time 0 will then be just Gy = Ry, but its importance sampling ratio will be a product of

7(Ao|So) w(A1|S1)  m(Ago|Ses)
100 factors, 5375y B(A[5,) " B Aso|So0) °

will be scaled by the entire product, but it is really only necessary to scale by the first

factor, by %. The other 99 factors Z((ﬁll‘lgll)) ggﬁ::“gg:)) are irrelevant because

after the first reward the return has already been determined. These later factors are
all independent of the return and of expected value 1; they do not change the expected
update, but they add enormously to its variance. In some cases they could even make the

In ordinary importance sampling, the return
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variance infinite. Let us now consider an idea for avoiding this large extraneous variance.

The essence of the idea is to think of discounting as determining a probability of
termination or, equivalently, a degree of partial termination. For any v € [0,1), we can
think of the return G as partly terminating in one step, to the degree 1 — -, producing
a return of just the first reward, R;, and as partly terminating after two steps, to the
degree (1 — )y, producing a return of Ry + Ry, and so on. The latter degree corresponds
to terminating on the second step, 1 — 7, and not having already terminated on the
first step, 7. The degree of termination on the third step is thus (1 — v)vy?2, with the v2
reflecting that termination did not occur on either of the first two steps. The partial
returns here are called flat partial returns:

G = Riy1 + Riyo + -+ + Ry, 0<t<h<T,

where “flat” denotes the absence of discounting, and “partial” denotes that these returns
do not extend all the way to termination but instead stop at h, called the horizon (and T
is the time of termination of the episode). The conventional full return G can be viewed
as a sum of flat partial returns as suggested above as follows:
Gy = Rip1 +vRiyo + ’72Rt+3 + -+ ’}/TitilRT
=(1—7)Rena
+ (1 =9)7 (Reg1 + Resa)
+ (1 =7)7° (Reg1 + Risa + Riys)

+ (1= (Riy1+ Reya+ - + Rr1)

+ ’YTitil (Rt+1 + Rt+2 R RT)
T—1
= (1 _7) Z /yh_t_lét:h + ’YT_t_lét:T~
h=t+1
Now we need to scale the flat partial returns by an importance sampling ratio that is
similarly truncated. As Gy, only involves rewards up to a horizon h, we only need the
ratio of the probabilities up to h. We define an ordinary importance-sampling estimator,
analogous to (5.5), as

) ZtE‘T(s) ((1 —) ngﬁ Y 1 G + ’YT(t)_t_lpt:T(t)—lét:T(t))

Vi(s) . (5.9)
[T ()l
and a weighted importance-sampling estimator, analogous to (5.6), as
DteT(s) ((1 =) ZZQ: Yt o1 Gn + ’VT(t)iti1pt:T(t)—1Gt:T(t)>
Vis) = . (5.10)

2 teT(s) ((1 — ) Sty ’YT(t)_t_lpt:T(t)71>

We call these two estimators discounting-aware importance sampling estimators. They
take into account the discount rate but have no effect (are the same as the off-policy
estimators from Section 5.5) if v = 1.
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5.9 *Per-decision Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can be
taken into account in off-policy importance sampling, a way that may be able to reduce
variance even in the absence of discounting (that is, even if y=1). In the off-policy
estimators (5.5) and (5.6), each term of the sum in the numerator is itself a sum:

pe1—1Gt = pr.17-1 (Rt+1 +YRypo + -+ ’VT_t_lRT)

T—t—

= prr-1Rip1 +yper—1 B2+ +y Yovr 1Ry, (5.11)

The off-policy estimators rely on the expected values of these terms, which can be written
in a simpler way. Note that each sub-term of (5.11) is a product of a random reward and
a random importance-sampling ratio. For example, the first sub-term can be written,
using (5.3), as

ot Resy — T(Ae|St) m(Aps1[Sev1) T(Arg2|Siq2)  m(Ar—1|ST-1)
P T (A S b(Ari|Ser1) b(AryalSer2)  b(Ar—1[ST_1)

Ritr. (5.12)

Of all these factors, one might suspect that only the first and the last (the reward)
are related; all the others are for events that occurred after the reward. Moreover, the
expected value of all these other factors is one:

7(Ag|Sk CL|5k) _ _
]E[ Aklsk] Zb al Sk) )—Z(L:W(cdsk)—l. (5.13)

With a few more steps, one can show that, as suspected, all of these other factors have
no effect in expectation, in other words, that

Elpt.r—1Ri+1] = Elpre Ret1] - (5.14)

If we repeat this process for the kth sub-term of (5.11), we get

]E[pt:TflRt+k] = E[pt:tJrkflRtJrk] .

It follows then that the expectation of our original term (5.11) can be written
Elpi.r-1Gi = E [ét} )

where

T—t—1

ét = pe:tRep1 + ypeer1Beqo + 72Pt:t+2Rt+3 +--+y prT—1RT.

We call this idea per-decision importance sampling. It follows immediately that there is
an alternate importance-sampling estimator, with the same unbiased expectation (in the
first-visit case) as the ordinary-importance-sampling estimator (5.5), using G:

Zte‘:r )

V)= =)

‘ , (5.15)
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which we might expect to sometimes be of lower variance.

Is there a per-decision version of weighted importance sampling? This is less clear. So
far, all the estimators that have been proposed for this that we know of are not consistent
(that is, they do not converge to the true value with infinite data).

*Exercise 5.13 Show the steps to derive (5.14) from (5.12). O

*Exercise 5.14 Modify the algorithm for off-policy Monte Carlo control (page 111) to use
the idea of the truncated weighted-average estimator (5.10). Note that you will first need
to convert this equation to action values. O

5.10 Summary

The Monte Carlo methods presented in this chapter learn value functions and optimal
policies from experience in the form of sample episodes. This gives them at least three
kinds of advantages over DP methods. First, they can be used to learn optimal behavior
directly from interaction with the environment, with no model of the environment’s
dynamics. Second, they can be used with simulation or sample models. For surprisingly
many applications it is easy to simulate sample episodes even though it is difficult to
construct the kind of explicit model of transition probabilities required by DP methods.
Third, it is easy and efficient to focus Monte Carlo methods on a small subset of the states.
A region of special interest can be accurately evaluated without going to the expense of
accurately evaluating the rest of the state set (we explore this further in Chapter 8).

A fourth advantage of Monte Carlo methods, which we discuss later in the book, is
that they may be less harmed by violations of the Markov property. This is because they
do not update their value estimates on the basis of the value estimates of successor states.
In other words, it is because they do not bootstrap.

In designing Monte Carlo control methods we have followed the overall schema of
generalized policy iteration (GPI) introduced in Chapter 4. GPI involves interacting
processes of policy evaluation and policy improvement. Monte Carlo methods provide an
alternative policy evaluation process. Rather than use a model to compute the value of
each state, they simply average many returns that start in the state. Because a state’s
value is the expected return, this average can become a good approximation to the
value. In control methods we are particularly interested in approximating action-value
functions, because these can be used to improve the policy without requiring a model of
the environment’s transition dynamics. Monte Carlo methods intermix policy evaluation
and policy improvement steps on an episode-by-episode basis, and can be incrementally
implemented on an episode-by-episode basis.

Maintaining sufficient exploration is an issue in Monte Carlo control methods. It is
not enough just to select the actions currently estimated to be best, because then no
returns will be obtained for alternative actions, and it may never be learned that they
are actually better. One approach is to ignore this problem by assuming that episodes
begin with state—action pairs randomly selected to cover all possibilities. Such exploring
starts can sometimes be arranged in applications with simulated episodes, but are unlikely
in learning from real experience. In on-policy methods, the agent commits to always
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exploring and tries to find the best policy that still explores. In off-policy methods, the
agent also explores, but learns a deterministic optimal policy that may be unrelated to
the policy followed.

Off-policy prediction refers to learning the value function of a target policy from data
generated by a different behavior policy. Such learning methods are based on some form
of importance sampling, that is, on weighting returns by the ratio of the probabilities of
taking the observed actions under the two policies, thereby transforming their expectations
from the behavior policy to the target policy. Ordinary importance sampling uses a
simple average of the weighted returns, whereas weighted importance sampling uses a
weighted average. Ordinary importance sampling produces unbiased estimates, but has
larger, possibly infinite, variance, whereas weighted importance sampling always has
finite variance and is preferred in practice. Despite their conceptual simplicity, off-policy
Monte Carlo methods for both prediction and control remain unsettled and are a subject
of ongoing research.

The Monte Carlo methods treated in this chapter differ from the DP methods treated
in the previous chapter in two major ways. First, they operate on sample experience,
and thus can be used for direct learning without a model. Second, they do not bootstrap.
That is, they do not update their value estimates on the basis of other value estimates.
These two differences are not tightly linked, and can be separated. In the next chapter
we consider methods that learn from experience, like Monte Carlo methods, but also
bootstrap, like DP methods.

Bibliographical and Historical Remarks

The term “Monte Carlo” dates from the 1940s, when physicists at Los Alamos devised
games of chance that they could study to help understand complex physical phenomena
relating to the atom bomb. Coverage of Monte Carlo methods in this sense can be found
in several textbooks (e.g., Kalos and Whitlock, 1986; Rubinstein, 1981).

5.1-2 Singh and Sutton (1996) distinguished between every-visit and first-visit MC
methods and proved results relating these methods to reinforcement learning
algorithms. The blackjack example is based on an example used by Widrow,
Gupta, and Maitra (1973). The soap bubble example is a classical Dirichlet
problem whose Monte Carlo solution was first proposed by Kakutani (1945; see
Hersh and Griego, 1969; Doyle and Snell, 1984).

Barto and Duff (1994) discussed policy evaluation in the context of classical
Monte Carlo algorithms for solving systems of linear equations. They used the
analysis of Curtiss (1954) to point out the computational advantages of Monte
Carlo policy evaluation for large problems.

5.3—4 Monte Carlo ES was introduced in the 1998 edition of this book. That may have
been the first explicit connection between Monte Carlo estimation and control
methods based on policy iteration. An early use of Monte Carlo methods to
estimate action values in a reinforcement learning context was by Michie and
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5.5

5.7

5.8

5.9

Chambers (1968). In pole balancing (page 56), they used averages of episode
durations to assess the worth (expected balancing “life”) of each possible action
in each state, and then used these assessments to control action selections. Their
method is similar in spirit to Monte Carlo ES with every-visit MC estimates.
Narendra and Wheeler (1986) studied a Monte Carlo method for ergodic finite
Markov chains that used the return accumulated between successive visits to the
same state as a reward for adjusting a learning automaton’s action probabilities.

Efficient off-policy learning has become recognized as an important challenge
that arises in several fields. For example, it is closely related to the idea of
“Interventions” and “counterfactuals” in probabalistic graphical (Bayesian) models
(e.g., Pearl, 1995; Balke and Pearl, 1994). Off-policy methods using importance
sampling have a long history and yet still are not well understood. Weighted
importance sampling, which is also sometimes called normalized importance
sampling (e.g., Koller and Friedman, 2009), is discussed by Rubinstein (1981),
Hesterberg (1988), Shelton (2001), and Liu (2001) among others.

The target policy in off-policy learning is sometimes referred to in the literature
as the “estimation” policy, as it was in the first edition of this book.

The racetrack exercise is adapted from Barto, Bradtke, and Singh (1995), and
from Gardner (1973).

Our treatment of the idea of discounting-aware importance sampling is based on
the analysis of Sutton, Mahmood, Precup, and van Hasselt (2014). It has been
worked out most fully to date by Mahmood (2017; Mahmood, van Hasselt, and
Sutton, 2014).

Per-decision importance sampling was introduced by Precup, Sutton, and Singh
(2000). They also combined off-policy learning with temporal-difference learning,
eligibility traces, and approximation methods, introducing subtle issues that we
consider in later chapters.






Chapter 6

Temporal-Difference Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-difference (TD) learning. TD learning is a combination of
Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo methods,
TD methods can learn directly from raw experience without a model of the environment’s
dynamics. Like DP, TD methods update estimates based in part on other learned
estimates, without waiting for a final outcome (they bootstrap). The relationship between
TD, DP, and Monte Carlo methods is a recurring theme in the theory of reinforcement
learning; this chapter is the beginning of our exploration of it. Before we are done, we
will see that these ideas and methods blend into each other and can be combined in many
ways. In particular, in Chapter 7 we introduce n-step algorithms, which provide a bridge
from TD to Monte Carlo methods, and in Chapter 12 we introduce the TD()) algorithm,
which seamlessly unifies them.

As usual, we start by focusing on the policy evaluation or prediction problem, the
problem of estimating the value function v, for a given policy w. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation of
generalized policy iteration (GPI). The differences in the methods are primarily differences
in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given
some experience following a policy m, both methods update their estimate V' of v, for
the nonterminal states S; occurring in that experience. Roughly speaking, Monte Carlo
methods wait until the return following the visit is known, then use that return as a
target for V(S). A simple every-visit Monte Carlo method suitable for nonstationary
environments is

V(S1) ¢ V(S) + |G~ V(S)], (6.1)

119
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where G is the actual return following time ¢, and « is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-a MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V(S;) (only then is
G known), TD methods need to wait only until the next time step. At time ¢ + 1 they
immediately form a target and make a useful update using the observed reward R;;; and
the estimate V' (S¢4+1). The simplest TD method makes the update

V(St) < V(Se) + a|Ri1 + 7V (Se41) — V(S) (6.2)

immediately on transition to S¢y; and receiving Ry 1. In effect, the target for the Monte
Carlo update is Gy, whereas the target for the TD update is Ry1 + vV (S¢41). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(\) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size « € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for §
Take action A, observe R, S’
V(S) < V(S) + a[R +V(S") — V(S)]
S+ 9

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

vr(8) = EL[Gt | Sp=5] (6.3)
=E [Rir1 +vGet1 | Si=¢] (from (3.9))
= Eﬂ[Rt+1 + 'Y'U'n'(StJrl) | St :S] . (64)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
U (St+1) 18 not known and the current estimate, V/(S11), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V' instead of the true v,. Thus, TD methods combine the sampling of
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Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination
this can take us a long way toward obtaining the advantages of both Monte Carlo and
DP methods.

Shown to the right is the backup diagram for tabular TD(0). The value
estimate for the state node at the top of the backup diagram is updated on
the basis of the one sample transition from it to the immediately following ?

state. We refer to TD and Monte Carlo updates as sample updates because I
they involve looking ahead to a sample successor state (or state—action pair),
using the value of the successor and the reward along the way to compute a O

backed-up value, and then updating the value of the original state (or state— TD(0)
action pair) accordingly. Sample updates differ from the expected updates

of DP methods in that they are based on a single sample successor rather than on a
complete distribution of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the difference between the estimated value of S; and the better estimate
Riy1 4+ vV (St41). This quantity, called the TD error, arises in various forms throughout
reinforcement learning:

0t = Rep1 + YV (St41) = V(S). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, d; is the error in V(S;), available at time
t + 1. Also note that if the array V' does not change during the episode (as it does not in
Monte Carlo methods), then the Monte Carlo error can be written as a sum of TD errors:

Gy —V(St) = Riy1 +7Giy1 — V(Se) + YV (Si41) — 7V (St41) (from (3.9))
=0+ ’Y(Gt+1 - V(St+1))
=0y + V041 + 77 (G2 — V(Si42))
=0 + Y01 + V2042 + -+ oo + 4T (G — V(ST))
=6+ Y011+ 7024+ o +47 (0 -0)

=) AFlg,. (6.6)

This identity is not exact if V' is updated during the episode (as it is in TD(0)), but if the
step size is small then it may still hold approximately. Generalizations of this identity
play an important role in the theory and algorithms of temporal-difference learning.

Ezercise 6.1 If V changes during the episode, then (6.6) only holds approximately; what
would the difference be between the two sides? Let V; denote the array of state values
used at time ¢ in the TD error (6.5) and in the TD update (6.2). Redo the derivation
above to determine the additional amount that must be added to the sum of TD errors
in order to equal the Monte Carlo error. O
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Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your office, you note the time,
the day of week, the weather, and anything else that might be relevant. Say on this
Friday you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain. Traffic
is often slower in the rain, so you reestimate that it will take 35 minutes from then, or a
total of 40 minutes. Fifteen minutes later you have completed the highway portion of
your journey in good time. As you exit onto a secondary road you cut your estimate of
total travel time to 35 minutes. Unfortunately, at this point you get stuck behind a slow
truck, and the road is too narrow to pass. You end up having to follow the truck until
you turn onto the side street where you live at 6:40. Three minutes later you are home.
The sequence of states, times, and predictions is thus as follows:

Elapsed Time Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.! We are
not discounting (y = 1), and thus the return for each state is the actual time to go from
that state. The value of each state is the expected time to go. The second column of
numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.1 (left). The red arrows
show the changes in predictions recommended by the constant-a MC method (6.1), for
a = 1. These are exactly the errors between the estimated value (predicted time to go)
in each state and the actual return (actual time to go). For example, when you exited
the highway you thought it would take only 15 minutes more to get home, but in fact it
took 23 minutes. Equation 6.1 applies at this point and determines an increment in the
estimate of time to go after exiting the highway. The error, G; — V(S;), at this time is
eight minutes. Suppose the step-size parameter, «, is 1/2. Then the predicted time to go
after exiting the highway would be revised upward by four minutes as a result of this
experience. This is probably too large a change in this case; the truck was probably just
an unlucky break. In any event, the change can only be made offline, that is, after you
have reached home. Only at this point do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your office that it will take 30
minutes to drive home, but then you become stuck in a massive traffic jam. Twenty-five
minutes after leaving the office you are still bumper-to-bumper on the highway. You now

LIf this were a control problem with the objective of minimizing travel time, then we would of course
make the rewards the negative of the elapsed time. But because we are concerned here only with
prediction (policy evaluation), we can keep things simple by using positive numbers.
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Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

estimate that it will take another 25 minutes to get home, for a total of 50 minutes. As
you wait in traffic, you already know that your initial estimate of 30 minutes was too
optimistic. Must you wait until you get home before increasing your estimate for the
initial state? According to the Monte Carlo approach you must, because you don’t yet
know the true return.

According to a TD approach, on the other hand, you would learn immediately, shifting
your initial estimate from 30 minutes toward 50. In fact, each estimate would be shifted
toward the estimate that immediately follows it. Returning to our first day of driving,
Figure 6.1 (right) shows the changes in the predictions recommended by the TD rule
(6.2) (these are the changes made by the rule if @ = 1). Each error is proportional to the
change over time of the prediction, that is, to the temporal differences in predictions.

Besides giving you something to do while waiting in traffic, there are several computa-
tional reasons why it is advantageous to learn based on your current predictions rather
than waiting until termination when you know the actual return. We briefly discuss some
of these in the next section. [ ]

Ezercise 6.2 This is an exercise to help develop your intuition about why TD methods
are often more efficient than Monte Carlo methods. Consider the driving home example
and how it is addressed by TD and Monte Carlo methods. Can you imagine a scenario
in which a TD update would be better on average than a Monte Carlo update? Give
an example scenario—a description of past experience and a current state—in which
you would expect the TD update to be better. Here’s a hint: Suppose you have lots of
experience driving home from work. Then you move to a new building and a new parking
lot (but you still enter the highway at the same place). Now you are starting to learn
predictions for the new building. Can you see why TD updates are likely to be much
better, at least initially, in this case? Might the same sort of thing happen in the original
scenario? |
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6.2 Advantages of TD Prediction Methods

TD methods update their estimates based in part on other estimates. They learn a
guess from a guess—they bootstrap. Is this a good thing to do? What advantages do
TD methods have over Monte Carlo and DP methods? Developing and answering such
questions will take the rest of this book and more. In this section we briefly anticipate
some of the answers.

Obviously, TD methods have an advantage over DP methods in that they do not
require a model of the environment, of its reward and next-state probability distributions.

The next most obvious advantage of TD methods over Monte Carlo methods is that
they are naturally implemented in an online, fully incremental fashion. With Monte
Carlo methods one must wait until the end of an episode, because only then is the return
known, whereas with TD methods one need wait only one time step. Surprisingly often
this turns out to be a critical consideration. Some applications have very long episodes, so
that delaying all learning until the end of the episode is too slow. Other applications are
continuing tasks and have no episodes at all. Finally, as we noted in the previous chapter,
some Monte Carlo methods must ignore or discount episodes on which experimental
actions are taken, which can greatly slow learning. TD methods are much less susceptible
to these problems because they learn from each transition regardless of what subsequent
actions are taken.

But are TD methods sound? Certainly it is convenient to learn one guess from the
next, without waiting for an actual outcome, but can we still guarantee convergence
to the correct answer? Happily, the answer is yes. For any fixed policy w, TD(0) has
been proved to converge to vy, in the mean for a constant step-size parameter if it is
sufficiently small, and with probability 1 if the step-size parameter decreases according to
the usual stochastic approximation conditions (2.7). Most convergence proofs apply only
to the table-based case of the algorithm presented above (6.2), but some also apply to
the case of general linear function approximation. These results are discussed in a more
general setting in Chapter 9.

If both TD and Monte Carlo methods converge asymptotically to the correct predictions,
then a natural next question is “Which gets there first?” In other words, which method
learns faster? Which makes the more efficient use of limited data? At the current time
this is an open question in the sense that no one has been able to prove mathematically
that one method converges faster than the other. In fact, it is not even clear what is the
most appropriate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-aw MC methods on stochastic
tasks, as illustrated in Example 6.2.
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Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-o MC when applied to the following Markov reward process:

W=~ (A)="=(B)="m(C)="»(D)="(E)— =

start

A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C,0,B,0,C,0,D,0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v;(C) = 0.5. The true values of all the states, A through E, are

123 4 5
6 6060 and g
0.8 Estimated 0.25 - Empirical RMS error,
value 100 averaged over states
10 0.2
0.6
(1)/ \ 0.15-
0.4
True 0.1-
values
0.2 4
0.05 —|
o=.05
0 T T T T 1 0 T T T 1
A B C D E 0 25 50 75 100
State Walks / Episodes

The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (o = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of a. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V' (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.
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Exercise 6.3 From the results shown in the left graph of the random walk example it
appears that the first episode results in a change in only V(A). What does this tell you
about what happened on the first episode? Why was only the estimate for this one state
changed? By exactly how much was it changed? O

Exercise 6.4 The specific results shown in the right graph of the random walk example
are dependent on the value of the step-size parameter, a. Do you think the conclusions
about which algorithm is better would be affected if a wider range of «a values were used?
Is there a different, fixed value of a at which either algorithm would have performed
significantly better than shown? Why or why not? g

*FEzercise 6.5 In the right graph of the random walk example, the RMS error of the
TD method seems to go down and then up again, particularly at high a’s. What could
have caused this? Do you think this always occurs, or might it be a function of how the
approximate value function was initialized? |
Ezercise 6.6 In Example 6.2 we stated that the true values for the random walk example
are +,2 3 2 and 2, for states A through E. Describe at least two different ways that
these could have been computed. Which would you guess we actually used? Why? O

6.3 Optimality of TD(0)

Suppose there is available only a finite amount of experience, say 10 episodes or 100
time steps. In this case, a common approach with incremental learning methods is to
present the experience repeatedly until the method converges upon an answer. Given an
approximate value function, V, the increments specified by (6.1) or (6.2) are computed
for every time step t at which a nonterminal state is visited, but the value function is
changed only once, by the sum of all the increments. Then all the available experience is
processed again with the new value function to produce a new overall increment, and so
on, until the value function converges. We call this batch updating because updates are
made only after processing each complete batch of training data.

Under batch updating, TD(0) converges deterministically to a single answer independent
of the step-size parameter, «, as long as « is chosen to be sufficiently small. The constant-
a MC method also converges deterministically under the same conditions, but to a
different answer. Understanding these two answers will help us understand the difference
between the two methods. Under normal updating the methods do not move all the way
to their respective batch answers, but in some sense they take steps in these directions.
Before trying to understand the two answers in general, for all possible tasks, we first
look at a few examples.

Example 6.3: Random walk under batch updating Batch-updating versions of
TD(0) and constant-a MC were applied as follows to the random walk prediction example
(Example 6.2). After each new episode, all episodes seen so far were treated as a batch.
They were repeatedly presented to the algorithm, either TD(0) or constant-ow MC, with
« sufficiently small that the value function converged. The resulting value function was
then compared with v,, and the average root mean-squared error across the five states
(and across 100 independent repetitions of the whole experiment) was plotted to obtain
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the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

Under batch training, constant-a
MC converges to values, V(s), that s
are sample averages of the actual re- BATCH TRAINING
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the ~RMS error,
mean-squared error from the actual averaged
returns in the training set. In this over states
sense it is surprising that the batch
TD method was able to perform

better according to the root mean- 0 , , , |
squared error measure shown in the 0 25 50 75 100
figure to the right. How is it that Walks / Episodes

batch TD was able to perform better

than this optimal method? The an- Figure 6.2: Performance of TD(0) and constant-a
swer is that the Monte Carlo method MC under batch training on the random walk task.
is optimal only in a limited way, and

that TD is optimal in a way that is more relevant to predicting returns. [ ]

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A,0,B.0
B,1

B,1
B,1

W“UU“UJUU
O = ==

) )

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V(A) and
V(B)? Everyone would probably agree that the optimal value for V(B) is %, because six
out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V(A) given this data? Here there are
two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value %, therefore A must have value % as well. F=0
One way of viewing this answer is that it is based on first @W
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the

3

model, which indeed in this case gives V(A) = 5. This is
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also the answer that batch TD(0) gives.

The other reasonable answer is simply to observe that we have seen A once and the
return that followed it was 0; we therefore estimate V' (A) as 0. This is the answer that
batch Monte Carlo methods give. Notice that it is also the answer that gives minimum
squared error on the training data. In fact, it gives zero error on the data. But still we
expect the first answer to be better. If the process is Markov, we expect that the first
answer will produce lower error on future data, even though the Monte Carlo answer is
better on the existing data. [ ]

Example 6.4 illustrates a general difference between the estimates found by batch
TD(0) and batch Monte Carlo methods. Batch Monte Carlo methods always find the
estimates that minimize mean-squared error on the training set, whereas batch TD(0)
always finds the estimates that would be exactly correct for the maximum-likelihood
model of the Markov process. In general, the mazimum-likelihood estimate of a parameter
is the parameter value whose probability of generating the data is greatest. In this case,
the maximum-likelihood estimate is the model of the Markov process formed in the
obvious way from the observed episodes: the estimated transition probability from i to j
is the fraction of observed transitions from ¢ that went to j, and the associated expected
reward is the average of the rewards observed on those transitions. Given this model,
we can compute the estimate of the value function that would be exactly correct if the
model were exactly correct. This is called the certainty-equivalence estimate because it
is equivalent to assuming that the estimate of the underlying process was known with
certainty rather than being approximated. In general, batch TD(0) converges to the
certainty-equivalence estimate.

This helps explain why TD methods converge more quickly than Monte Carlo methods.
In batch form, TD(0) is faster than Monte Carlo methods because it computes the
true certainty-equivalence estimate. This explains the advantage of TD(0) shown in the
batch results on the random walk task (Figure 6.2). The relationship to the certainty-
equivalence estimate may also explain in part the speed advantage of nonbatch TD(0)
(e.g., Example 6.2, page 125, right graph). Although the nonbatch methods do not achieve
either the certainty-equivalence or the minimum squared-error estimates, they can be
understood as moving roughly in these directions. Nonbatch TD(0) may be faster than
constant-a MC because it is moving toward a better estimate, even though it is not
getting all the way there. At the current time nothing more definite can be said about
the relative efficiency of online TD and Monte Carlo methods.

Finally, it is worth noting that although the certainty-equivalence estimate is in some
sense an optimal solution, it is almost never feasible to compute it directly. If n = |8] is
the number of states, then just forming the maximum-likelihood estimate of the process
may require on the order of n? memory, and computing the corresponding value function
requires on the order of n® computational steps if done conventionally. In these terms it
is indeed striking that TD methods can approximate the same solution using memory
no more than order n and repeated computations over the training set. On tasks with
large state spaces, TD methods may be the only feasible way of approximating the
certainty-equivalence solution.

*Exercise 6.7 Design an off-policy version of the TD(0) update that can be used with
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arbitrary target policy 7w and covering behavior policy b, using at each step ¢ the importance
sampling ratio ps.¢ (5.3). O

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade off exploration and exploitation, and again approaches fall into two main classes:
on-policy and off-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate ¢, (s, a) for the current behavior
policy 7 and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v,. Recall that an episode consists of an alternating
sequence of states and state—action pairs:

e . @ RHI Rt+2 RI+3 ...
Ay A Ao Atz

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state—action pair to state—action pair,
and learn the values of state—action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, Ar) + Q(S, Ap) + | Rep1 +vQ(St41, Ar1) — Q(Sh, At)]

(6.7)

This update is done after every transition from a nonterminal state S;. If

S¢r1 is terminal, then Q(S¢+1, A¢r1) is defined as zero. This rule uses every I

element of the quintuple of events, (S, Ay, Ryy1, St+1, Ai+1), that make up a

transition from one state—action pair to the next. This quintuple gives rise to

the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown L4

to the right. Sarsa
It is straightforward to design an on-policy control algorithm based on the Sarsa

prediction method. As in all on-policy methods, we continually estimate ¢, for the

behavior policy 7, and at the same time change 7 toward greediness with respect to ¢.

The general form of the Sarsa control algorithm is given in the box on the next page.
The convergence properties of the Sarsa algorithm depend on the nature of the policy’s

dependence on ). For example, one could use e-greedy or e-soft policies. Sarsa converges

with probability 1 to an optimal policy and action-value function as long as all state—action

pairs are visited an infinite number of times and the policy converges in the limit to

the greedy policy (which can be arranged, for example, with e-greedy policies by setting

e=1/t).

Ezercise 6.8 Show that an action-value version of (6.6) holds for the action-value form

of the TD error §; = Ry11 + vQ(St+1, A1) — Q(S, Ay), again assuming that the values

don’t change from step to step. O
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Sarsa (on-policy TD control) for estimating Q = g.

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S. A) « Q(S, A) + a[R+1Q(S, 4') — Q(S, A)]
S+ S A A
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one difference: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind
is given below each column, in num-
ber of cells shifted upward. For ex- 170 =
ample, if you are one cell to the 150 ! i
right of the goal, then the action ‘_I_’
left takes you to the cell just above i S
the goal. This is an undiscounted \ Actions
episodic task, with constant rewards
of —1 until the goal state is reached.
The graph to the right shows the 30
results of applying e-greedy Sarsa to
this task, with ¢ = 0.1, o = 0.5,
and the initial values Q(s,a) = 0
for all s,a. The increasing slope of
the graph shows that the goal was Time steps
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued e-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be used
here because termination is not guaranteed for all policies. If a policy was ever found
that caused the agent to stay in the same state, then the next episode would never end.
Online learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else. [ ]
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Ezxercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than the
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usual four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by
the wind? 0O

Ezercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the effect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. [

6.5 Q-learning: Off-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
off-policy TD control algorithm known as @-learning (Watkins, 1989), defined by

Q(St, Ar) = Q(S1 A1) + o Russ +7maxQ(Sii1,0) — Q(Si, Ar)]. (68)

In this case, the learned action-value function, (), directly approximates q,, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an effect in that it determines which state—action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, () has been shown to converge with probability 1 to
g«- The Q-learning algorithm is shown below in procedural form.

Q-learning (off-policy TD control) for estimating = ~ .

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, Q(5’,a) — Q(S, 4)]
S5

until S is terminal
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What is the backup diagram for Q-learning? The rule (6.8) updates a state—action
pair, so the top node, the root of the update, must be a small, filled action node. The
update is also from action nodes, maximizing over all those actions possible in the next
state. Thus the bottom nodes of the backup diagram should be all these action nodes.
Finally, remember that we indicate taking the maximum of these “next action” nodes
with an arc across them (Figure 3.4-right). Can you guess now what the diagram is? If
so, please do make a guess before turning to the answer in Figure 6.4 on page 134.

Example 6.6: Cliff Walking This gridworld example compares Sarsa and Q-learning,
highlighting the difference between on-policy (Sarsa) and off-policy (Q-learning) methods.
Consider the gridworld shown to the

right. This is a standard undis- R=-1

counted, episodic task, with start Safer path
and goal states, and the usual ac-
tions causing movement up, down,
right, and left. Reward is —1 on all
transitions except those into the re-
gion marked “The CIliff.” Stepping
into this region incurs a reward of
—100 and sends the agent instantly
back to the start.

The graph to the right shows the
performance of the Sarsa and Q-
learning methods with e-greedy ac-
tion selection, ¢ = 0.1. After an
initial transient, Q-learning learns Sarsa
values for the optimal policy, that 254
which travels right along the edge
of the cliff. Unfortunately, this re-
sults in its occasionally falling off _
the cliff because of the e-greedy ac- rz\ijv:rr]ds Q-learning
tion selection. Sarsa, on the other episoc?e
hand, takes the action selection into
account and learns the longer but
safer path through the upper part
of the gI‘ld Although Q—learning ac- 100 0 l(l)() 260 360 460 S(I)O
tually learns the values of the opti- Episodes
mal policy, its online performance
is worse than that of Sarsa, which
learns the roundabout policy. Of course, if € were gradually reduced, then both methods
would asymptotically converge to the optimal policy. [ |

Optimal path

The Cliff

w__
O<|—

Sum of 54

2754

FEzercise 6.11 Why is Q-learning considered an off-policy control method? O

FEzercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? O
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6.6 Expected Sarsa

Counsider the learning algorithm that is just like Q-learning except that instead of the
maximum over next state—action pairs it uses the expected value, taking into account
how likely each action is under the current policy. That is, consider the algorithm with
the update rule

Q(St, Ar) + Q(S¢, Ar) + Oé[Rt+1 +YEAQ(St11, Aty1) | Stq1] — Q(St, At)]

— Q(St, Ar) + a[Rt+1 +7 ) w(alSe1)Q(Sit1,a) — Q(SuAt)}v (6.9)

but that otherwise follows the schema of Q-learning. Given the next state, Sy, this
algorithm moves deterministically in the same direction as Sarsa moves in ezpectation,
and accordingly it is called Fzpected Sarsa. Its backup diagram is shown on the right in
Figure 6.4.

Expected Sarsa is more complex computationally than Sarsa but, in return, it eliminates
the variance due to the random selection of A;y;. Given the same amount of experience
we might expect it to perform slightly better than Sarsa, and indeed it generally does.
Figure 6.3 shows summary results on the cliff-walking task with Expected Sarsa compared
to Sarsa and Q-learning. Expected Sarsa retains the significant advantage of Sarsa over
Q-learning on this problem. In addition, Expected Sarsa shows a significant improvement

0
E é S
40 Asymptotic Performance xpected Sarsa |
ooxl XX @
i 1)
-| i X
Sum of rewards | Qrlearning x Sarsa .
per episode SR DA GO0+ E SRA S
-80 - * gV oo BT Qilearning 1
x v ogoB
L kv' o i
X @ .
v - Interim Performance
120+ - i
g
W i
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(8%

Figure 6.3: Interim and asymptotic performance of TD control methods on the cliff-walking
task as a function of a. All algorithms used an e-greedy policy with ¢ = 0.1. Asymptotic
performance is an average over 100,000 episodes whereas interim performance is an average
over the first 100 episodes. These data are averages of over 50,000 and 10 runs for the interim
and asymptotic cases respectively. The solid circles mark the best interim performance of each
method. Adapted from van Seijen et al. (2009).
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! !
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e o o e & o
Q-learning Expected Sarsa

Figure 6.4: The backup diagrams for Q-learning and Expected Sarsa.

over Sarsa over a wide range of values for the step-size parameter «. In cliff walking
the state transitions are all deterministic and all randomness comes from the policy. In
such cases, Expected Sarsa can safely set a =1 without suffering any degradation of
asymptotic performance, whereas Sarsa can only perform well in the long run at a small
value of «, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cliff walking results Expected Sarsa was used on-policy, but in general it
might use a policy different from the target policy 7 to generate behavior, in which case
it becomes an off-policy algorithm. For example, suppose 7 is the greedy policy while
behavior is more exploratory; then Expected Sarsa is exactly Q-learning. In this sense
Expected Sarsa subsumes and generalizes Q-learning while reliably improving over Sarsa.
Except for the small additional computational cost, Expected Sarsa may completely
dominate both of the other more-well-known TD control algorithms.

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
construction of their target policies. For example, in Q-learning the target policy is
the greedy policy given the current action values, which is defined with a max, and in
Sarsa the policy is often e-greedy, which also involves a maximization operation. In these
algorithms, a maximum over estimated values is used implicitly as an estimate of the
maximum value, which can lead to a significant positive bias. To see why, consider a
single state s where there are many actions a whose true values, ¢(s, a), are all zero but
whose estimated values, Q(s, a), are uncertain and thus distributed some above and some
below zero. The maximum of the true values is zero, but the maximum of the estimates
is positive, a positive bias. We call this maximization bias.

Example 6.7: Maximization Bias Example The small MDP shown inset in
Figure 6.5 provides a simple example of how maximization bias can harm the performance
of TD control algorithms. The MDP has two non-terminal states A and B. Episodes
always start in A with a choice between two actions, left and right. The right action
transitions immediately to the terminal state with a reward and return of zero. The
left action transitions to B, also with a reward of zero, from which there are many
possible actions all of which cause immediate termination with a reward drawn from a
normal distribution with mean —0.1 and variance 1.0. Thus, the expected return for
any trajectory starting with left is —0.1, and thus taking left in state A is always a
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Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

mistake. Nevertheless, our control methods may favor left because of maximization bias
making B appear to have a positive value. Figure 6.5 shows that Q-learning with e-greedy
action selection initially learns to strongly favor the left action on this example. Even at
asymptote, Q-learning takes the left action about 5% more often than is optimal at our
parameter settings (¢ = 0.1, « = 0.1, and vy = 1). [ ]

Are there algorithms that avoid maximization bias? To start, consider a bandit case in
which we have noisy estimates of the value of each of many actions, obtained as sample
averages of the rewards received on all the plays with each action. As we discussed above,
there will be a positive maximization bias if we use the maximum of the estimates as
an estimate of the maximum of the true values. One way to view the problem is that
it is due to using the same samples (plays) both to determine the maximizing action
and to estimate its value. Suppose we divided the plays in two sets and used them to
learn two independent estimates, call them @1 (a) and Q2(a), each an estimate of the
true value g(a), for all @ € A. We could then use one estimate, say (1, to determine
the maximizing action A* = argmax, Q1(a), and the other, 2, to provide the estimate
of its value, Q2(A*) = Q2(argmax, Q1(a)). This estimate will then be unbiased in the
sense that E[Q2(A*)] = q(A*). We can also repeat the process with the role of the two
estimates reversed to yield a second unbiased estimate @1 (argmax, Q2(a)). This is the
idea of double learning. Note that although we learn two estimates, only one estimate is
updated on each play; double learning doubles the memory requirements, but does not
increase the amount of computation per step.

The idea of double learning extends naturally to algorithms for full MDPs. For example,
the double learning algorithm analogous to Q-learning, called Double Q-learning, divides
the time steps in two, perhaps by flipping a coin on each step. If the coin comes up heads,
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the update is
Q1(St, Ap) « Q1(St, Ap)+a [Rt+1+’yQ2(St+17al"gmaXQl(StHaa))—Ql(StaAt) . (6.10)

If the coin comes up tails, then the same update is done with @ and @2 switched,
so that @5 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action-value estimates. For example, an
e-greedy policy for Double Q-learning could be based on the average (or sum) of the two
action-value estimates. A complete algorithm for Double Q-learning is given in the box
below. This is the algorithm used to produce the results in Figure 6.5. In that example,
double learning seems to eliminate the harm caused by maximization bias. Of course
there are also double versions of Sarsa and Expected Sarsa.

Double Q-learning, for estimating (); ~ Q2 ~ g.

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q1 (s,a) and Qa(s,a), for all s € 87, a € A(s), such that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Qu(5,4) + Q1(S, 4) + a( R +1Qs(S', argmax, Qu (', )) — Qu(5, 4))
else:
Qa2(S, 4) « Qa(S,4) + a( R+ 1Q: (', argmax, Qa(S", @) — Q2(S, 4) )

S+ S
until S is terminal

*Fxercise 6.13 What are the update equations for Double Expected Sarsa with an
e-greedy target policy? O

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way. For
example, our general approach involves learning an action-value function, but in Chapter 1
we presented a TD method for learning to play tic-tac-toe that learned something much
more like a state-value function. If we look closely at that example, it becomes apparent
that the function learned there is neither an action-value function nor a state-value
function in the usual sense. A conventional state-value function evaluates states in which
the agent has the option of selecting an action, but the state-value function used in
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tic-tac-toe evaluates board positions after the agent has made its move. Let us call these
afterstates, and value functions over these, afterstate value functions. Afterstates are
useful when we have knowledge of an initial part of the environment’s dynamics but not
necessarily of the full dynamics. For example, in games we typically know the immediate
effects of our moves. We know for each possible chess move what the resulting position
will be, but not how our opponent will reply. Afterstate value functions are a natural
way to take advantage of this kind of knowledge and thereby produce a more efficient
learning method.

The reason it is more efficient to design algorithms in terms of afterstates is apparent
from the tic-tac-toe example. A conventional action-value function would map from
positions and moves to an estimate of the value. But many position—-move pairs produce
the same resulting position, as in the example below:

e e
o + X o x +

In such cases the position—move pairs are different but produce the same “afterposition,”

and thus must have the same value. A conventional action-value function would have to
separately assess both pairs, whereas an afterstate value function would immediately assess
both equally. Any learning about the position—move pair on the left would immediately
transfer to the pair on the right.

Afterstates arise in many tasks, not just games. For example, in queuing tasks there
are actions such as assigning customers to servers, rejecting customers, or discarding
information. In such cases the actions are in fact defined in terms of their immediate
effects, which are completely known.

It is impossible to describe all the possible kinds of specialized problems and corre-
sponding specialized learning algorithms. However, the principles developed in this book
should apply widely. For example, afterstate methods are still aptly described in terms
of generalized policy iteration, with a policy and (afterstate) value function interacting in
essentially the same way. In many cases one will still face the choice between on-policy
and off-policy methods for managing the need for persistent exploration.

Ezercise 6.14 Describe how the task of Jack’s Car Rental (Example 4.2) could be
reformulated in terms of afterstates. Why, in terms of this specific task, would such a
reformulation be likely to speed convergence? O
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6.9 Summary

In this chapter we introduced a new kind of learning method, temporal-difference (TD)
learning, and showed how it can be applied to the reinforcement learning problem. As
usual, we divided the overall problem into a prediction problem and a control problem.
TD methods are alternatives to Monte Carlo methods for solving the prediction problem.
In both cases, the extension to the control problem is via the idea of generalized policy
iteration (GPI) that we abstracted from dynamic programming. This is the idea that
approximate policy and value functions should interact in such a way that they both
move toward their optimal values.

One of the two processes making up GPI drives the value function to accurately predict
returns for the current policy; this is the prediction problem. The other process drives
the policy to improve locally (e.g., to be e-greedy) with respect to the current value
function. When the first process is based on experience, a complication arises concerning
maintaining sufficient exploration. We can classify TD control methods according to
whether they deal with this complication by using an on-policy or off-policy approach.
Sarsa is an on-policy method, and Q-learning is an off-policy method. Expected Sarsa
is also an off-policy method as we present it here. There is a third way in which TD
methods can be extended to control which we did not include in this chapter, called
actor—critic methods. These methods are covered in full in Chapter 13.

The methods presented in this chapter are today the most widely used reinforcement
learning methods. This is probably due to their great simplicity: they can be applied
online, with a minimal amount of computation, to experience generated from interaction
with an environment; they can be expressed nearly completely by single equations that
can be implemented with small computer programs. In the next few chapters we extend
these algorithms, making them slightly more complicated and significantly more powerful.
All the new algorithms will retain the essence of those introduced here: they will be able
to process experience online, with relatively little computation, and they will be driven
by TD errors. The special cases of TD methods introduced in the present chapter should
rightly be called one-step, tabular, model-free TD methods. In the next two chapters we
extend them to n-step forms (a link to Monte Carlo methods) and forms that include
a model of the environment (a link to planning and dynamic programming). Then, in
the second part of the book we extend them to various forms of function approximation
rather than tables (a link to deep learning and artificial neural networks).

Finally, in this chapter we have discussed TD methods entirely within the context of
reinforcement learning problems, but TD methods are actually more general than this.
They are general methods for learning to make long-term predictions about dynamical
systems. For example, TD methods may be relevant to predicting financial data, life
spans, election outcomes, weather patterns, animal behavior, demands on power stations,
or customer purchases. It was only when TD methods were analyzed as pure prediction
methods, independent of their use in reinforcement learning, that their theoretical
properties first came to be well understood. Even so, these other potential applications
of TD learning methods have not yet been extensively explored.
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Bibliographical and Historical Remarks

As we outlined in Chapter 1, the idea of TD learning has its early roots in animal learning
psychology and artificial intelligence, most notably the work of Samuel (1959) and Klopf
(1972). Samuel’s work is described as a case study in Section 16.2. Also related to TD
learning are Holland’s (1975, 1976) early ideas about consistency among value predictions.
These influenced one of the authors (Barto), who was a graduate student from 1970 to
1975 at the University of Michigan, where Holland was teaching. Holland’s ideas led to
a number of TD-related systems, including the work of Booker (1982) and the bucket
brigade of Holland (1986), which is related to Sarsa as discussed below.

6.1-2 Most of the specific material from these sections is from Sutton (1988), includ-
ing the TD(0) algorithm, the random walk example, and the term “temporal-
difference learning.” The characterization of the relationship to dynamic pro-
gramming and Monte Carlo methods was influenced by Watkins (1989), Werbos
(1987), and others. The use of backup diagrams was new to the first edition of
this book.

Tabular TD(0) was proved to converge in the mean by Sutton (1988) and with
probability 1 by Dayan (1992), based on the work of Watkins and Dayan (1992).
These results were extended and strengthened by Jaakkola, Jordan, and Singh
(1994) and Tsitsiklis (1994) by using extensions of the powerful existing theory
of stochastic approximation. Other extensions and generalizations are covered in
later chapters.

6.3 The optimality of the TD algorithm under batch training was established by
Sutton (1988). Illuminating this result is Barnard’s (1993) derivation of the TD
algorithm as a combination of one step of an incremental method for learning a
model of the Markov chain and one step of a method for computing predictions
from the model. The term certainty equivalence is from the adaptive control
literature (e.g., Goodwin and Sin, 1984).

6.4 The Sarsa algorithm was introduced by Rummery and Niranjan (1994). They
explored it in conjunction with artificial neural networks and called it “Modified
Connectionist Q-learning”. The name “Sarsa” was introduced by Sutton (1996).
The convergence of one-step tabular Sarsa (the form treated in this chapter) has
been proved by Singh, Jaakkola, Littman, and Szepesvéari (2000). The “windy
gridworld” example was suggested by Tom Kalt.

Holland’s (1986) bucket brigade idea evolved into an algorithm closely related to
Sarsa. The original idea of the bucket brigade involved chains of rules triggering
each other; it focused on passing credit back from the current rule to the rules
that triggered it. Over time, the bucket brigade came to be more like TD learning
in passing credit back to any temporally preceding rule, not just to the ones
that triggered the current rule. The modern form of the bucket brigade, when
simplified in various natural ways, is nearly identical to one-step Sarsa, as detailed
by Wilson (1994).
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6.5

6.6

6.7

6.8

Q-learning was introduced by Watkins (1989), whose outline of a convergence
proof was made rigorous by Watkins and Dayan (1992). More general convergence
results were proved by Jaakkola, Jordan, and Singh (1994) and Tsitsiklis (1994).

The Expected Sarsa algorithm was introduced by George John (1994), who
called it “Q-learning” and stressed its advantages over Q-learning as an off-policy
algorithm. John’s work was not known to us when we presented Expected
Sarsa in the first edition of this book as an exercise, or to van Seijen, van
Hasselt, Whiteson, and Weiring (2009) when they established Expected Sarsa’s
convergence properties and conditions under which it will outperform regular
Sarsa and Q-learning. Our Figure 6.3 is adapted from their results. Van Seijen
et al. defined “Expected Sarsa” to be an on-policy method exclusively (as we
did in the first edition), whereas now we use this name for the general algorithm
in which the target and behavior policies may differ. The general off-policy
view of Expected Sarsa was noted by van Hasselt (2011), who called it “General
Q-learning.”

Maximization bias and double learning were introduced and extensively investi-
gated by van Hasselt (2010, 2011). The example MDP in Figure 6.5 was adapted
from that in his Figure 4.1 (van Hasselt, 2011).

The notion of an afterstate is the same as that of a “post-decision state” (Van
Roy, Bertsekas, Lee, and Tsitsiklis, 1997; Powell, 2011).



Chapter 7

n-step Bootstrapping

In this chapter we unify the Monte Carlo (MC) methods and the one-step temporal-
difference (TD) methods presented in the previous two chapters. Neither MC methods nor
one-step TD methods are always the best. In this chapter we present n-step T'D methods
that generalize both methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task. n-step methods span a spectrum with
MC methods at one end and one-step TD methods at the other. The best methods are
often intermediate between the two extremes.

Another way of looking at the benefits of n-step methods is that they free you from
the tyranny of the time step. With one-step TD methods the same time step determines
how often the action can be changed and the time interval over which bootstrapping
is done. In many applications one wants to be able to update the action very fast to
take into account anything that has changed, but bootstrapping works best if it is over a
length of time in which a significant and recognizable state change has occurred. With
one-step TD methods, these time intervals are the same, and so a compromise must be
made. n-step methods enable bootstrapping to occur over multiple steps, freeing us from
the tyranny of the single time step.

The idea of n-step methods is usually used as an introduction to the algorithmic
idea of eligibility traces (Chapter 12), which enable bootstrapping over multiple time
intervals simultaneously. Here we instead consider the n-step bootstrapping idea on its
own, postponing the treatment of eligibility-trace mechanisms until later. This allows us
to separate the issues better, dealing with as many of them as possible in the simpler
n-step setting.

As usual, we first consider the prediction problem and then the control problem. That
is, we first consider how n-step methods can help in predicting returns as a function of
state for a fixed policy (i.e., in estimating v,). Then we extend the ideas to action values
and control methods.

141
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7.1 mn-step TD Prediction

What is the space of methods lying between Monte Carlo and TD methods? Consider
estimating v, from sample episodes generated using 7. Monte Carlo methods perform
an update for each state based on the entire sequence of observed rewards from that
state until the end of the episode. The update of one-step TD methods, on the other
hand, is based on just the one next reward, bootstrapping from the value of the state
one step later as a proxy for the remaining rewards. One kind of intermediate method,
then, would perform an update based on an intermediate number of rewards: more than
one, but less than all of them until termination. For example, a two-step update would
be based on the first two rewards and the estimated value of the state two steps later.
Similarly, we could have three-step updates, four-step updates, and so on. Figure 7.1
shows the backup diagrams of the spectrum of n-step updates for v,, with the one-step
TD update on the left and the up-until-termination Monte Carlo update on the right.

1-step TD oo-step TD
and TD(0) 2-stepTD  3-step TD n-step TD and Monte Carlo
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Figure 7.1: The backup diagrams of n-step methods. These methods form a spectrum ranging
from one-step TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change
an earlier estimate based on how it differs from a later estimate. Now the later estimate
is not one step later, but n steps later. Methods in which the temporal difference extends
over n steps are called n-step TD methods. The TD methods introduced in the previous
chapter all used one-step updates, which is why we called them one-step TD methods.

More formally, consider the update of the estimated value of state S; as a result of the
state-reward sequence, Si, Ryy1,Si+1, Rito, - - ., Rr, ST (omitting the actions). We know
that in Monte Carlo updates the estimate of v,(S;) is updated in the direction of the
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complete return:
Gy = Riy1 +vRivo + 72Rt+3 + -+ ’YTitilRT,

where T is the last time step of the episode. Let us call this quantity the target of the
update. Whereas in Monte Carlo updates the target is the return, in one-step updates
the target is the first reward plus the discounted estimated value of the next state, which
we call the one-step return:

Gritr1 = Rep1 +7Vi(Se41),

where V; : 8§ — R here is the estimate at time ¢ of v,,. The subscripts on Gy.;y1 indicate
that it is a truncated return for time ¢ using rewards up until time ¢+1, with the discounted
estimate yV;(S;11) taking the place of the other terms YRy 1o +7?Rip3+- -+ " Ry
of the full return, as discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a two-step
update is the two-step return:

Grita = Riy1 +YRiv2 +7*Vir1(Sit2),

where now v2V;;1(S42) corrects for the absence of the terms Y2 Ry 3 + Y3 Rypq + - +
vT=t=1Ry. Similarly, the target for an arbitrary n-step update is the n-step return:

Grain = Riy1 +YRipa + - + 7" 'R + Y Vitn—1(Setn), (7.1)

for all n,t such that n > 1 and 0 < ¢t < T — n. All n-step returns can be considered
approximations to the full return, truncated after n steps and then corrected for the
remaining missing terms by Viin—1(Si4n). If t +n > T (if the n-step return extends
to or beyond termination), then all the missing terms are taken as zero, and the n-step
return defined to be equal to the ordinary full return (Gpiyn = Geif t+n > T).

Note that n-step returns for n > 1 involve future rewards and states that are not
available at the time of transition from ¢ to ¢t + 1. No real algorithm can use the n-step
return until after it has seen R;i, and computed Viy,_1. The first time these are
available is t + n. The natural state-value learning algorithm for using n-step returns is
thus

Vien(St) = Vign-1(91) + a[Grign — Vign—1(S)], 0<t<T, (7.2)

while the values of all other states remain unchanged: Vi1, (s) = Vitn_1(s), for all s#£S;.
We call this algorithm n-step T'D. Note that no changes at all are made during the first
n — 1 steps of each episode. To make up for that, an equal number of additional updates
are made at the end of the episode, after termination and before starting the next episode.
Complete pseudocode is given in the box on the next page.

FEzercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the
sum of TD errors (6.6) if the value estimates don’t change from step to step. Show that
the n-step error used in (7.2) can also be written as a sum TD errors (again if the value
estimates don’t change) generalizing the earlier result. ([l

Ezercise 7.2 (programming) With an n-step method, the value estimates do change from
step to step, so an algorithm that used the sum of TD errors (see previous exercise) in
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n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V (s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T ¢ o0
Loop for t =0,1,2,... :
| Ift <T, then:

| Take an action according to m(-|S)

| Observe and store the next reward as R;;; and the next state as Sy11
| If S¢yq is terminal, then T < ¢ + 1

| 7+ t—n+1 (7 isthe time whose state’s estimate is being updated)

| If7>0:
|

|

|

G — Z;ﬁi(ﬁrn’ﬂ Ni=T-1R,
If 7+ n<T,then: G+ G+~"V(Sr4n) (Gririn)

V(ST) — V(S‘r) +a [G - V(ST)]
Untilt=T -1

place of the error in (7.2) would actually be a slightly different algorithm. Would it be a
better algorithm or a worse one? Devise and program a small experiment to answer this
question empirically. O

The n-step return uses the value function Vi, _1 to correct for the missing rewards
beyond R;i,. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v, than Vi, 1 is, in a worst-state sense. That is,
the worst error of the expected n-step return is guaranteed to be less than or equal to "
times the worst error under V4, _1:

max Ew[Gt:t+n|St :S] — U (8)‘ < ,.yn max

Vien-1(s) = vx(s)|, (7.3)

for all n > 1. This is called the error reduction property of n-step returns. Because of the
error reduction property, one can show formally that all n-step TD methods converge to
the correct predictions under appropriate technical conditions. The n-step TD methods
thus form a family of sound methods, with one-step TD methods and Monte Carlo
methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using n-step
TD methods on the 5-state random walk task described in Example 6.2 (page 125).
Suppose the first episode progressed directly from the center state, C, to the right,
through D and E, and then terminated on the right with a return of 1. Recall that the
estimated values of all the states started at an intermediate value, V(s) = 0.5. As a result
of this experience, a one-step method would change only the estimate for the last state,
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V(E), which would be incremented toward 1, the observed return. A two-step method,
on the other hand, would increment the values of the two states preceding termination:
V(D) and V(E) both would be incremented toward 1. A three-step method, or any n-step
method for n > 2, would increment the values of all three of the visited states toward 1,
all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test for
a larger random walk process, with 19 states instead of 5 (and with a —1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter. Results
are shown for n-step TD methods with a range of values for n and «. The performance
measure for each parameter setting, shown on the vertical axis, is the square-root of
the average squared error between the predictions at the end of the episode for the 19
states and their true values, then averaged over the first 10 episodes and 100 repetitions
of the whole experiment (the same sets of walks were used for all parameter settings).
Note that methods with an intermediate value of n worked best. This illustrates how
the generalization of TD and Monte Carlo methods to n-step methods can potentially
perform better than either of the two extreme methods.

0.55
0.5

Average 045

RMS error
over 19 states 04
and first 10
episodes  °*°
03
0.25 1 1 1 1 1 ]
0 0.2 04 0.6 0.8 1
8}

Figure 7.2: Performance of n-step TD methods as a function of «, for various values of n, on
a 19-state random walk task (Example 7.1). [ ]

Exercise 7.8 Why do you think a larger random walk task (19 states instead of 5) was
used in the examples of this chapter? Would a smaller walk have shifted the advantage
to a different value of n? How about the change in left-side outcome from 0 to —1 made
in the larger walk? Do you think that made any difference in the best value of n? [

7.2 mn-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this section
we show how n-step methods can be combined with Sarsa in a straightforward way to
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produce an on-policy TD control method. The n-step version of Sarsa we call n-step
Sarsa, and the original version presented in the previous chapter we henceforth call
one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state—action pairs) and then use
an e-greedy policy. The backup diagrams for n-step Sarsa (shown in Figure 7.3), like
those of n-step TD (Figure 7.1), are strings of alternating states and actions, except that
the Sarsa ones all start and end with an action rather a state. We redefine n-step returns
(update targets) in terms of estimated action values:

Grasn = Rip1+vRio+ 47" ' Rin+7" Qrin—1(Sin, An), n>1,0<t < T—n,
(7.4)

with Gy = Gy if t +n > T. The natural algorithm is then

Qi4+n (St At) = Qrn—1(St, At) + @ [Gritvn — Qrn—1(St, Ar)], 0<t<T, (7.5)
while the values of all other states remain unchanged: Q¢4+, (S,a) = Qt1n-1(S,a), for all
s,a such that s # S; or a # A;. This is the algorithm we call n-step Sarsa. Pseudocode

is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

1-step Sarsa oo-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

SR T S S T
T 7 .7 7
DS O
P
IO

[
Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and

the estimated value of the nth next state—action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.
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n-step Sarsa for estimating Q) = ¢, or ¢,

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size « € (0, 1], small € > 0, a positive integer n

All store and access operations (for S;, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ 7(+|Sp)

T + o0
Loop for t =0,1,2,... :
| Ift <T, then:

Take action A,
Observe and store the next reward as R;;; and the next state as S;41
If S¢yq is terminal, then:
T+—t+1
else:
Select and store an action A1 ~ w(-|Siy1)
T+ t—n+1 (7 is the time whose estimate is being updated)
If > 0:

|
|
|
|
|
|
|
| in(r+n,T)
min(7+n, 1'_7-_
| G+ Zz =741 1R

| fr+n<T, then G+ G+"Q(Sr4n, Arin) (Grirtn)
| QSnAr) QS Ar) + a (G — Q(Sy, Ay )]

| If 7 is belng learned, then ensure that 7(-|S;) is e-greedy wrt Q

Until7 =T -1

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—> > *
v
T T ik}
: G G G| [+
] ¥ [ =

Figure 7.4: Gridworld example of the speedup of policy learning due to the use of n-step
methods. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the G. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at G. The arrows in the other two panels show
which action values were strengthened as a result of this path by one-step and n-step Sarsa
methods. The one-step method strengthens only the last action of the sequence of actions that
led to the high reward, whereas the n-step method strengthens the last n actions of the sequence,
so that much more is learned from the one episode.
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Ezercise 7.4 Prove that the n-step return of Sarsa (7.4) can be written exactly in terms
of a novel TD error, as

min(t+n,T)—1
Grasn = Q1(S A)+ > 7 [Ragr +7Qr(Skr1, Arsr) — Que1(Sk, Ar)].-
k=t
(7.6)

|

What about Expected Sarsa? The backup diagram for the n-step version of Expected

Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of sample

actions and states, just as in n-step Sarsa, except that its last element is a branch over

all action possibilities weighted, as always, by their probability under 7. This algorithm

can be described by the same equation as n-step Sarsa (above) except with the n-step
return redefined as

Gitrn = Rep1 + -+ 9" "Rign + 7" Vign—1(St4n), t+n<T, (7.7)

(with Gy.iq =Gy for t +n > T) where V;(s) is the expected approzimate value of state s,
using the estimated action values at time ¢, under the target policy:

Vi(s) = ZW(@\S)Q,:(S, a), for all s € 8. (7.8)

a

Expected approximate values are used in developing many of the action-value methods
in the rest of this book. If s is terminal, then its expected approximate value is defined
to be 0.

7.3 mn-step Off-policy Learning

Recall that off-policy learning is learning the value function for one policy, m, while
following another policy, b. Often, 7 is the greedy policy for the current action-value-
function estimate, and b is a more exploratory policy, perhaps e-greedy. In order to
use the data from b we must take into account the difference between the two policies,
using their relative probability of taking the actions that were taken (see Section 5.5). In
n-step methods, returns are constructed over n steps, so we are interested in the relative
probability of just those n actions. For example, to make a simple off-policy version of
n-step TD, the update for time ¢ (actually made at time ¢ 4+ n) can simply be weighted

by Pt:t+n—1-
Vian(St) = Vign—1(St) + aptttn—1Gtan — Vien—1(St)], 0<t < T, (7.9)

where py.44n—1, called the importance sampling ratio, is the relative probability under
the two policies of taking the n actions from A; to Ayqp—1 (cf. Eq. 5.3):

min(h,T—1)

. m(Ag|Sk)
P g W (7.10)
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For example, if any one of the actions would never be taken by 7 (i.e., m(Ag|Sk) = 0) then
the n-step return should be given zero weight and be totally ignored. On the other hand,
if by chance an action is taken that m would take with much greater probability than b
does, then this will increase the weight that would otherwise be given to the return. This
makes sense because that action is characteristic of 7 (and therefore we want to learn
about it) but is selected only rarely by b and thus rarely appears in the data. To make
up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always
1. Thus our new update (7.9) generalizes and can completely replace our earlier n-step
TD update. Similarly, our previous n-step Sarsa update can be completely replaced by a
simple off-policy form:

Qt—i—n(Sta At) = Qt+n—1(5t, At) + apiiiitin [Gt:t+n - Qt+n—1(st7 At)] s (7-11)

for 0 <t < T. Note that the importance sampling ratio here starts and ends one step
later than for n-step TD (7.9). This is because here we are updating a state—action
pair. We do not have to care how likely we were to select the action; now that we have
selected it we want to learn fully from what happens, with importance sampling only for
subsequent actions. Pseudocode for the full algorithm is shown in the box below.

Off-policy n-step Sarsa for estimating Q ~ g. or ¢

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € S,a € A
Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for Si, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sp # terminal
Select and store an action Ag ~ b(-|So)

T+ 0
Loop for t =0,1,2,...:
| Ift < T, then:

| Take action A;

| Observe and store the next reward as R:+1 and the next state as Si4+1
| If S¢+1 is terminal, then:

| T—t+1

| else:

| Select and store an action A¢y1 ~ b(:|S¢+1)

| 7+ t—m+1 (7 is the time whose estimate is being updated)
|

|

|

|

|

|

If 7> 0:
min(t+n—1,T—-1) w(A;|S;
P < HZ:Ti; ) W (pr+1:t+n71)
G+~ Z;ﬁzr;f:f—n,T) ,yz—‘r—lRi
Ifr4+n< T, then: G + G + ’}/nQ(Sqqu,, A-r+n) (G‘r:7'+n)

Q(Sr, Ar)  Q(Sr, Ar) + ap[G = Q(Sr, Ar)]
If 7 is being learned, then ensure that 7(:|S-) is greedy wrt Q
Untilt=T -1
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The off-policy version of n-step Expected Sarsa would use the same update as above
for n-step Sarsa except that the importance sampling ratio would have one less factor in
it. That is, the above equation would use p¢y1.44n—1 instead of piy1.44n, and of course
it would use the Expected Sarsa version of the n-step return (7.7). This is because in
Expected Sarsa all possible actions are taken into account in the last state; the one
actually taken has no effect and does not have to be corrected for.

7.4 *Per-decision Methods with Control Variates

The multi-step off-policy methods presented in the previous section are simple and
conceptually clear, but are probably not the most efficient. A more sophisticated approach
would use per-decision importance sampling ideas such as were introduced in Section 5.9.
To understand this approach, first note that the ordinary n-step return (7.1), like all
returns, can be written recursively. For the n steps ending at horizon h, the n-step return
can be written

Gi:n = Rip1 +7Giq1:n, t<h<T, (7.12)

where Gp.p, = Vi,—1(Sr). (Recall that this return is used at time h, previously denoted
t +n.) Now consider the effect of following a behavior policy b that is not the same
as the target policy w. All of the resulting experience, including the first reward Ry
and the next state Sy;1 must be weighted by the importance sampling ratio for time ¢,
pr = %. One might be tempted to simply weight the righthand side of the above
equation, but one can do better. Suppose the action at time ¢ would never be selected by
m, so that p; is zero. Then a simple weighting would result in the n-step return being
zero, which could result in high variance when it was used as a target. Instead, in this
more sophisticated approach, one uses an alternate, off-policy definition of the n-step
return ending at horizon h, as

Gin = pt (Rig1 +vYGiyrn) + (1 — pe) Vi—1(Se), t<h<T, (7.13)

where again Gp.p, = Vi,—1(Sp). In this approach, if p; is zero, then instead of the target
being zero and causing the estimate to shrink, the target is the same as the estimate and
causes no change. The importance sampling ratio being zero means we should ignore the
sample, so leaving the estimate unchanged seems appropriate. The second, additional
term in (7.13) is called a control variate (for obscure reasons). Notice that the control
variate does not change the expected update; the importance sampling ratio has expected
value one (Section 5.9) and is uncorrelated with the estimate, so the expected value
of the control variate is zero. Also note that the off-policy definition (7.13) is a strict
generalization of the earlier on-policy definition of the n-step return (7.1), as the two are
identical in the on-policy case, in which p; is always 1.

For a conventional n-step method, the learning rule to use in conjunction with (7.13)
is the n-step TD update (7.2), which has no explicit importance sampling ratios other
than those embedded in the return.

FEzercise 7.5 Write the pseudocode for the off-policy state-value prediction algorithm
described above. |
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For action values, the off-policy definition of the m-step return is a little different
because the first action does not play a role in the importance sampling. That first action
is the one being learned; it does not matter if it was unlikely or even impossible under the
target policy—it has been taken and now full unit weight must be given to the reward
and state that follows it. Importance sampling will apply only to the actions that follow
it.

First note that for action values the n-step on-policy return ending at horizon h,
expectation form (7.7), can be written recursively just as in (7.12), except that for action
values the recursion ends with Gj,.;, = V;,_1(S}) as in (7.8). An off-policy form with
control variates is

Gen = Repq + ’Y(Pt+1Gt+1:h + Vh—l(St+1) - Pt+1Qh—1(St+1,At+1))7

= Rit1 +vpe41 (Gt+1:h — Qn—1(St41, At+1)) +YVh-1(Si41), t<h<T.
(7.14)

If h < T, then the recursion ends with Gp.p, = Qn—1(Sh, An), whereas, if h > T,
the recursion ends with and Gr_1.;, = Ry. The resultant prediction algorithm (after
combining with (7.5)) is analogous to Expected Sarsa.

Exercise 7.6 Prove that the control variate in the above equations does not change the
expected value of the return. ([l

*Fxercise 7.7 Write the pseudocode for the off-policy action-value prediction algorithm
described immediately above. Pay particular attention to the termination conditions for
the recursion upon hitting the horizon or the end of episode. ([l

Egzercise 7.8 Show that the general (off-policy) version of the n-step return (7.13) can
still be written exactly and compactly as the sum of state-based TD errors (6.5) if the
approximate state value function does not change. O

Ezercise 7.9 Repeat the above exercise for the action version of the off-policy n-step
return (7.14) and the Expected Sarsa TD error (the quantity in brackets in Equation 6.9).
O

Ezercise 7.10 (programming) Devise a small off-policy prediction problem and use it to
show that the off-policy learning algorithm using (7.13) and (7.2) is more data efficient
than the simpler algorithm using (7.1) and (7.9). O

The importance sampling that we have used in this section, the previous section, and
in Chapter 5, enables sound off-policy learning, but also results in high variance updates,
forcing the use of a small step-size parameter and thereby causing learning to be slow. It
is probably inevitable that off-policy training is slower than on-policy training—after all,
the data is less relevant to what is being learned. However, it is probably also true that
these methods can be improved on. The control variates are one way of reducing the
variance. Another is to rapidly adapt the step sizes to the observed variance, as in the
Autostep method (Mahmood, Sutton, Degris and Pilarski, 2012). Yet another promising
approach is the invariant updates of Karampatziakis and Langford (2010) as extended
to TD by Tian (in preparation). The usage technique of Mahmood (2017; Mahmood
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and Sutton, 2015) may also be part of the solution. In the next section we consider an
off-policy learning method that does not use importance sampling.

7.5 Off-policy Learning Without Importance Sampling:
The n-step Tree Backup Algorithm

Is off-policy learning possible without importance sampling? Q-learning and Expected
Sarsa from Chapter 6 do this for the one-step case, but is there a corresponding multi-step
algorithm? In this section we present just such an n-step method, called the tree-backup
algorithm.

The idea of the algorithm is suggested by the 3-step tree-backup backup
diagram shown to the right. Down the central spine and labeled in the
diagram are three sample states and rewards, and two sample actions.
These are the random variables representing the events occurring after the
initial state—action pair S;, A;. Hanging off to the sides of each state are
the actions that were not selected. (For the last state, all the actions are
considered to have not (yet) been selected.) Because we have no sample
data for the unselected actions, we bootstrap and use the estimates of
their values in forming the target for the update. This slightly extends the
idea of a backup diagram. So far we have always updated the estimated
value of the node at the top of the diagram toward a target combining L IAt'
the rewards along the way (appropriately discounted) and the estimated 3

values of the nodes at the bottom. In the tree-backup update, the target /Kt +3
includes all these things plus the estimated values of the dangling action

nodes hanging off the sides, at all levels. This is why it is called a tree- e o 0
backup update; it is an update from the entire tree of estimated action the 3-step

values.
More precisely, the update is from the estimated action values of the

tree-backup
update

leaf nodes of the tree. The action nodes in the interior, corresponding to

the actual actions taken, do not participate. Each leaf node contributes to the target
with a weight proportional to its probability of occurring under the target policy w. Thus
each first-level action a contributes with a weight of m(a|S¢41), except that the action
actually taken, A1, does not contribute at all. Its probability, m(A¢11]St+1), is used
to weight all the second-level action values. Thus, each non-selected second-level action
a’ contributes with weight m(Asy1|Si+1)7(a’|St+2). Each third-level action contributes
with weight m(A41]Si+1)m(Arra|Sire)m(a”|Si+3), and so on. It is as if each arrow to an
action node in the diagram is weighted by the action’s probability of being selected under
the target policy and, if there is a tree below the action, then that weight applies to all
the leaf nodes in the tree.
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We can think of the 3-step tree-backup update as consisting of 6 half-steps, alternating
between sample half-steps from an action to a subsequent state, and expected half-steps
considering from that state all possible actions with their probabilities of occuring under
the policy.

Now let us develop the detailed equations for the n-step tree-backup algorithm. The
one-step return (target) is the same as that of Expected Sarsa,

Guis1 = R +7 Z m(a|St41)Q:(St41, a), (7.15)

for t <T — 1, and the two-step tree-backup return is

Grirar = Ripr +7 Y m(alSi41)Qut1(Sei1, )
a?’éAtJrl

+ 7y (Ar1|Se41) (Rt+2 +9 > m(alSir2)Qer1(Sera, a))

= Rip1 +7 Y, m(alS11)Qer1(Si41,a) + v (A1 |Ser1) Gryraga,
aFEAr41

for t < T — 2. The latter form suggests the general recursive definition of the tree-backup
n-step return:

Grtn = Rip1+7 Z m(alSt41)Quan-1(Sit1,a) + Y(Ar1]Se1)Girrign, (7.16)
aFAii

for t <T —1,n > 2, with the n = 1 case handled by (7.15) except for Gr_1.44n = Rr.
This target is then used with the usual action-value update rule from n-step Sarsa:

Qt4+n(St; At) = Qign—1(St, At) + ¢ [Gritn — Qran—1(St, Ar)],

for 0 < t < T, while the values of all other state—action pairs remain unchanged:
Qt4n(8,a) = Qiyn—1(s,a), for all s,a such that s#S; or a # A;. Pseudocode for this
algorithm is shown in the box on the next page.

Exercise 7.11 Show that if the approximate action values are unchanging, then the
tree-backup return (7.16) can be written as a sum of expectation-based TD errors:

min(t+n—1,T—1) k
Grein = QS A)+ Y & ] (AilS)),
k=t 1=t+1

where §; = Ry1 +vVi(Sir1) — Q(St, At) and V; is given by (7.8). O
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n-step Tree Backup for estimating Q) =~ g, or ¢,

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size « € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action Ay arbitrarily as a function of Sy; Store Ay
T ¢ o0
Loop for t =0,1,2,... :
| Ift<T:
| Take action A;; observe and store the next reward and state as Rii1, St4+1
| If Syy1 is terminal:
| T+t+1
| else:
| Choose an action A;y; arbitrarily as a function of S¢y1; Store A;qq
| 7+ t+1—n (7 is the time whose estimate is being updated)
| If7>0:
| Ift+1>1T:
| G« Rr
| else
| G« Riy1 +7 3, m(alSi41)Q(Si41, a)
| Loop for k = min(¢,T — 1) down through 7 + 1:
| G < Ry +7Za;ﬁAk m(a|Sk)Q(Sk, a) + ym(Ax|Sk)G
| Q(ST7AT) <~ Q(STﬂAT) +a[G_Q(ST7A’T)]
| If 7 is being learned, then ensure that 7 (:|.S;) is greedy wrt Q
Until =T —1

7.6 *A Unifying Algorithm: n-step Q(o)

So far in this chapter we have considered three different kinds of action-value algorithms,
corresponding to the first three backup diagrams shown in Figure 7.5. n-step Sarsa has
all sample transitions, the tree-backup algorithm has all state-to-action transitions fully
branched without sampling, and n-step Expected Sarsa has all sample transitions except
for the last state-to-action one, which is fully branched with an expected value. To what
extent can these algorithms be unified?

One idea for unification is suggested by the fourth backup diagram in Figure 7.5. This
is the idea that one might decide on a step-by-step basis whether one wanted to take the
action as a sample, as in Sarsa, or consider the expectation over all actions instead, as in
the tree-backup update. Then, if one chose always to sample, one would obtain Sarsa,
whereas if one chose never to sample, one would get the tree-backup algorithm. Expected
Sarsa would be the case where one chose to sample for all steps except for the last one.
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Figure 7.5: The backup diagrams of the three kinds of n-step action-value updates considered
so far in this chapter (4-step case) plus the backup diagram of a fourth kind of update that unifies
them all. The ‘p’s indicate half transitions on which importance sampling is required in the
off-policy case. The fourth kind of update unifies all the others by choosing on a state-by-state
basis whether to sample (o, = 1) or not (o, = 0).

And of course there would be many other possibilities, as suggested by the last diagram
in the figure. To increase the possibilities even further we can consider a continuous
variation between sampling and expectation. Let oy € [0, 1] denote the degree of sampling
on step t, with ¢ = 1 denoting full sampling and ¢ = 0 denoting a pure expectation with
no sampling. The random variable o, might be set as a function of the state, action, or
state—action pair at time ¢. We call this proposed new algorithm n-step Q(o).

Now let us develop the equations of n-step Q(o). First we write the tree-backup
n-step return (7.16) in terms of the horizon h =t + n and then in terms of the expected
approximate value V (7.8):

Gen = Rep1 +7y Z 7(alSi41)Qn—1(St41,a) + Y7 (Air1|St41)Gri1:n
aFAi

= Rit1 +YVae1(Si1) — v (A1) Se41) Q-1 (Se41, Ar1) + ym(Aes1|Ses1)Grran
= Riy1 +ym(Ai41]Se41) (Gt+1:h — Qn—1(St+1, At+1)) + YVh-1(St+1),

after which it is exactly like the n-step return for Sarsa with control variates (7.14) except
with the action probability m(A¢11]S¢+1) substituted for the importance-sampling ratio
pry1- For Q(o), we slide linearly between these two cases:

Giuh = Rep1 + ’7<Ut+1pt+1 +(1- Ut+1)7T(At+1|St+1>) (Gt+1:h - thl(StJrl»AtJrl))
+ ’YVh_1(St+1), (717)
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for t < h < T. The recursion ends with Gp., = Qp—1(Sh, Ay) if h < T, or with
Gr_1.7 = Ry if h = T. Then we use the general (off-policy) update for n-step Sarsa
(7.11). A complete algorithm is given in the box.

Off-policy n-step Q(o) for estimating @ ~ ¢. or ¢,

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € §,a € A
Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size « € (0, 1], small € > 0, a positive integer n
All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose and store an action Ay ~ b(-|Sp)
T + o0
Loop for t=0,1,2,... :
Ift<T:
Take action Ay; observe and store the next reward and state as Rii1, St+1
If Siyq is terminal:
T+—t+1
else:
Choose and store an action A;yq ~ b(-|S¢41)

Select and store o441

m(At41]St41)
Store BA]Se) 3 P

|

|

|

|

|

|

|

|

| 7+ t—n+1 (7 is the time whose estimate is being updated)
| Ifr>0:
|

|

|

|

|

|

|

|

|

G« 0:
Loop for k = min(t + 1,T) down through 7 + 1:
ifk="T:
G+~ Rr
else:

V>, m(alSk)Q(Sk, a) B
G Ri + v(okpr + (1 — o) (Ak|Sk)) (G — Q(Sk, Ar)) + 7V
Q(STa AT) <~ Q(S‘ra AT) +a [G - Q(ST7 AT)]
If 7 is being learned, then ensure that 7 (:|S;) is greedy wrt Q
Untilt =T -1
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7.7 Summary

In this chapter we have developed a range of temporal-difference learning methods that lie
in between the one-step TD methods of the previous chapter and the Monte Carlo methods
of the chapter before. Methods that involve an intermediate amount of bootstrapping
are important because they will typically perform better than either extreme.
Our focus in this chapter has been on n-step methods, which
look ahead to the next n rewards, states, and actions. The two
T ]
g
g
(o}
a

s

4-step backup diagrams to the right together summarize most of the
methods introduced. The state-value update shown is for n-step ﬁ)
[ ]

n-step Q(c), which generalizes Expected Sarsa and Q-learning. All
n-step methods involve a delay of n time steps before updating,
as only then are all the required future events known. A further
drawback is that they involve more computation per time step
than previous methods. Compared to one-step methods, n-step
methods also require more memory to record the states, actions,
rewards, and sometimes other variables over the last n time steps.
Eventually, in Chapter 12, we will see how multi-step TD methods
can be implemented with minimal memory and computational
complexity using eligibility traces, but there will always be some
additional computation beyond one-step methods. Such costs can
be well worth paying to escape the tyranny of the single time step.

-1
=0
 J
1
=0

TD with importance sampling, and the action-value update is for
p?

OO0+ 09

Although n-step methods are more complex than those using
eligibility traces, they have the great benefit of being conceptually  4-step 4-step
clear. We have sought to take advantage of this by developing two TD Q(o)
approaches to off-policy learning in the n-step case. One, based on
importance sampling is conceptually simple but can be of high variance. If the target and
behavior policies are very different it probably needs some new algorithmic ideas before
it can be efficient and practical. The other, based on tree-backup updates, is the natural
extension of Q-learning to the multi-step case with stochastic target policies. It involves
no importance sampling but, again if the target and behavior policies are substantially
different, the bootstrapping may span only a few steps even if n is large.
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Bibliographical and Historical Remarks

The notion of n-step returns is due to Watkins (1989), who also first discussed their error
reduction property. n-step algorithms were explored in the first edition of this book,
in which they were treated as of conceptual interest, but not feasible in practice. The
work of Cichosz (1995) and particularly van Seijen (2016) showed that they are actually
completely practical algorithms. Given this, and their conceptual clarity and simplicity,
we have chosen to highlight them here in the second edition. In particular, we now
postpone all discussion of the backward view and of eligibility traces until Chapter 12.

7.1-2 The results in the random walk examples were made for this text based on work
of Sutton (1988) and Singh and Sutton (1996). The use of backup diagrams to
describe these and other algorithms in this chapter is new.

7.3—5 The developments in these sections are based on the work of Precup, Sutton,
and Singh (2000), Precup, Sutton, and Dasgupta (2001), and Sutton, Mahmood,
Precup, and van Hasselt (2014).

The tree-backup algorithm is due to Precup, Sutton, and Singh (2000), but the
presentation of it here is new.

7.6 The Q(o) algorithm is new to this text, but closely related algorithms have been
explored further by De Asis, Hernandez-Garcia, Holland, and Sutton (2017).



Chapter 8

Planning and Learning with
Tabular Methods

In this chapter we develop a unified view of reinforcement learning methods that require
a model of the environment, such as dynamic programming and heuristic search, and
methods that can be used without a model, such as Monte Carlo and temporal-difference
methods. These are respectively called model-based and model-free reinforcement learning
methods. Model-based methods rely on planning as their primary component, while
model-free methods primarily rely on learning. Although there are real differences between
these two kinds of methods, there are also great similarities. In particular, the heart of
both kinds of methods is the computation of value functions. Moreover, all the methods
are based on looking ahead to future events, computing a backed-up value, and then
using it as an update target for an approximate value function. Earlier in this book we
presented Monte Carlo and temporal-difference methods as distinct alternatives, then
showed how they can be unified by n-step methods. Our goal in this chapter is a similar
integration of model-based and model-free methods. Having established these as distinct
in earlier chapters, we now explore the extent to which they can be intermixed.

8.1 Models and Planning

By a model of the environment we mean anything that an agent can use to predict how the
environment will respond to its actions. Given a state and an action, a model produces a
prediction of the resultant next state and next reward. If the model is stochastic, then
there are several possible next states and next rewards, each with some probability of
occurring. Some models produce a description of all possibilities and their probabilities;
these we call distribution models. Other models produce just one of the possibilities,
sampled according to the probabilities; these we call sample models. For example, consider
modeling the sum of a dozen dice. A distribution model would produce all possible sums
and their probabilities of occurring, whereas a sample model would produce an individual

159
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sum drawn according to this probability distribution. The kind of model assumed in
dynamic programming—estimates of the MDP’s dynamics, p(s’,7|s, a)—is a distribution
model. The kind of model used in the blackjack example in Chapter 5 is a sample model.
Distribution models are stronger than sample models in that they can always be used
to produce samples. However, in many applications it is much easier to obtain sample
models than distribution models. The dozen dice are a simple example of this. It would
be easy to write a computer program to simulate the dice rolls and return the sum, but
harder and more error-prone to figure out all the possible sums and their probabilities.

Models can be used to mimic or simulate experience. Given a starting state and action,
a sample model produces a possible transition, and a distribution model generates all
possible transitions weighted by their probabilities of occurring. Given a starting state
and a policy, a sample model could produce an entire episode, and a distribution model
could generate all possible episodes and their probabilities. In either case, we say the
model is used to simulate the environment and produce simulated experience.

The word planning is used in several different ways in different fields. We use the
term to refer to any computational process that takes a model as input and produces or
improves a policy for interacting with the modeled environment:

model planning

policy

In artificial intelligence, there are two distinct approaches to planning according to our
definition. State-space planning, which includes the approach we take in this book,
is viewed primarily as a search through the state space for an optimal policy or an
optimal path to a goal. Actions cause transitions from state to state, and value functions
are computed over states. In what we call plan-space planning, planning is instead a
search through the space of plans. Operators transform one plan into another, and
value functions, if any, are defined over the space of plans. Plan-space planning includes
evolutionary methods and “partial-order planning,” a common kind of planning in artificial
intelligence in which the ordering of steps is not completely determined at all stages of
planning. Plan-space methods are difficult to apply efficiently to the stochastic sequential
decision problems that are the focus in reinforcement learning, and we do not consider
them further (but see, e.g., Russell and Norvig, 2010).

The unified view we present in this chapter is that all state-space planning methods
share a common structure, a structure that is also present in the learning methods
presented in this book. It takes the rest of the chapter to develop this view, but there are
two basic ideas: (1) all state-space planning methods involve computing value functions
as a key intermediate step toward improving the policy, and (2) they compute value
functions by updates or backup operations applied to simulated experience. This common
structure can be diagrammed as follows:

simulated backups

model .
experience

values ——= policy

Dynamic programming methods clearly fit this structure: they make sweeps through the
space of states, generating for each state the distribution of possible transitions. Each
distribution is then used to compute a backed-up value (update target) and update the
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state’s estimated value. In this chapter we argue that various other state-space planning
methods also fit this structure, with individual methods differing only in the kinds of
updates they do, the order in which they do them, and in how long the backed-up
information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning
methods that we have described in this book. The heart of both learning and planning
methods is the estimation of value functions by backing-up update operations. The
difference is that whereas planning uses simulated experience generated by a model,
learning methods use real experience generated by the environment. Of course this
difference leads to a number of other differences, for example, in how performance is
assessed and in how flexibly experience can be generated. But the common structure
means that many ideas and algorithms can be transferred between planning and learning.
In particular, in many cases a learning algorithm can be substituted for the key update
step of a planning method. Learning methods require only experience as input, and in
many cases they can be applied to simulated experience just as well as to real experience.
The box below shows a simple example of a planning method based on one-step tabular
Q-learning and on random samples from a sample model. This method, which we call
random-sample one-step tabular Q-planning, converges to the optimal policy for the model
under the same conditions that one-step tabular Q-learning converges to the optimal
policy for the real environment (each state—action pair must be selected an infinite number
of times in Step 1, and o must decrease appropriately over time).

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’
Q(S, A) < Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, A)]

. .

In addition to the unified view of planning and learning methods, a second theme in
this chapter is the benefits of planning in small, incremental steps. This enables planning
to be interrupted or redirected at any time with little wasted computation, which appears
to be a key requirement for efficiently intermixing planning with acting and with learning
of the model. Planning in very small steps may be the most efficient approach even on
pure planning problems if the problem is too large to be solved exactly.

8.2 Dyna: Integrated Planning, Acting, and Learning

When planning is done online, while interacting with the environment, a number of
interesting issues arise. New information gained from the interaction may change the
model and thereby interact with planning. It may be desirable to customize the planning
process in some way to the states or decisions currently under consideration, or expected
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in the near future. If decision making and model learning are both computation-intensive
processes, then the available computational resources may need to be divided between
them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an online planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent sections we
elaborate some of the alternate ways of achieving each function and the trade-offs between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.
Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of
reinforcement learning methods we have discussed

in previous chapters. The former we call model- value/policy

learning, and the latter we call direct reinforcement .
learning (direct RL). The possible relationships . acting
between experience, model, values, and policy are planning di;ﬁ_Ct

summarized in the diagram to the right. Each ar-

row shows a relationship of influence and presumed

improvement. Note how experience can improve model experience
value functions and policies either directly or in- \_/
directly via the model. It is the latter, which is

sometimes called indirect reinforcement learning, I;?giig

that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect methods
often make fuller use of a limited amount of experience and thus achieve a better policy
with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not affected by biases in the design of the model. Some have argued
that indirect methods are always superior to direct ones, while others have argued that
direct methods are responsible for most human and animal learning. Related debates
in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive
decision making (see Chapter 14 for discussion of some of these issues from the perspective
of psychology). Our view is that the contrast between the alternatives in all these debates
has been exaggerated, that more insight can be gained by recognizing the similarities
between these two sides than by opposing them. For example, in this book we have
emphasized the deep similarities between dynamic programming and temporal-difference
methods, even though one was designed for planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in the diagram above—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method on page 161. The direct RL method
is one-step tabular Q-learning. The model-learning method is also table-based and assumes
the environment is deterministic. After each transition Sy, Ay — R;11,S¢+1, the model
records in its table entry for S;, A; the prediction that R;y1,S:+1 will deterministically
follow. Thus, if the model is queried with a state—action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction.
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During planning, the Q-planning algorithm randomly samples only from state—action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, differing only in the source of their experience.

AN

Policy/value functions

planning update

direct RL simulated

update experience
real
experience
model search
learning control
Model

[Environment]

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, affects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q),
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete
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n iterations (Steps 1-3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s,a) denotes the contents of the (predicted next state
and reward) for state—action pair (s,a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

(a) S < current (nonterminal) state
(b) A « e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S A) + a[R + ymax, Q(S',a) — Q(S, A)]
(e) Model(S,A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R, S’ + Model(S, A)

Q(S, A) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with v = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was o = 0.1, and the exploration parameter was € = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (« and ) were
optimized for it. The nonplanning agent took about 25 episodes to reach (e-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.
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Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

WITHOUT PLANNING (n=0) WITH PLANNING ( 1:50)
= G =ttt |G

t A saRAR! }
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- ===}
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Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent. |
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In Dyna-Q, learning and planning are accomplished by exactly the same algorithm,
operating on real experience for learning and on simulated experience for planning.
Because planning proceeds incrementally, it is trivial to intermix planning and acting.
Both proceed as fast as they can. The agent is always reactive and always deliberative,
responding instantly to the latest sensory information and yet always planning in the
background. Also ongoing in the background is the model-learning process. As new
information is gained, the model is updated to better match reality. As the model changes,
the ongoing planning process will gradually compute a different way of behaving to match
the new model.

Exercise 8.1 The nonplanning method looks particularly poor in Figure 8.3 because it is
a one-step method; a method using multi-step bootstrapping would do better. Do you
think one of the multi-step bootstrapping methods from Chapter 7 could do as well as
the Dyna method? Explain why or why not. |

8.3 When the Model Is Wrong

In the maze example presented in the previous section, the changes in the model were
relatively modest. The model started out empty, and was then filled only with exactly
correct information. In general, we cannot expect to be so fortunate. Models may be
incorrect because the environment is stochastic and only a limited number of samples
have been observed, or because the model was learned using function approximation that
has generalized imperfectly, or simply because the environment has changed and its new
behavior has not yet been observed. When the model is incorrect, the planning process is
likely to compute a suboptimal policy.

In some cases, the suboptimal policy computed by planning quickly leads to the
discovery and correction of the modeling error. This tends to happen when the model
is optimistic in the sense of predicting greater reward or better state transitions than
are actually possible. The planned policy attempts to exploit these opportunities and in
doing so discovers that they do not exist.

Example 8.2: Blocking Maze A maze example illustrating this relatively minor
kind of modeling error and recovery from it is shown in Figure 8.4. Initially, there is a
short path from start to goal, to the right of the barrier, as shown in the upper left of the
figure. After 1000 time steps, the short path is “blocked,” and a longer path is opened up
along the left-hand side of the barrier, as shown in upper right of the figure. The graph
shows average cumulative reward for a Dyna-Q agent and an enhanced Dyna-Q-+ agent
to be described shortly. The first part of the graph shows that both Dyna agents found
the short path within 1000 steps. When the environment changed, the graphs become
flat, indicating a period during which the agents obtained no reward because they were
wandering around behind the barrier. After a while, however, they were able to find the
new opening and the new optimal behavior.

Greater difficulties arise when the environment changes to become better than it was
before, and yet the formerly correct policy does not reveal the improvement. In these
cases the modeling error may not be detected for a long time, if ever.
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Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration. |

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an e-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

L TsE T

400+

Cumulative
reward

0 3000 6000
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Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

|

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.
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We want the agent to explore to find changes in the environment, but not so much that
performance is greatly degraded. As in the earlier exploration/exploitation conflict, there
probably is no solution that is both perfect and practical, but simple heuristics are often
effective.

The Dyna-Q-+ agent that did solve the shortcut maze uses one such heuristic. This
agent keeps track for each state—action pair of how many time steps have elapsed since
the pair was last tried in a real interaction with the environment. The more time that
has elapsed, the greater (we might presume) the chance that the dynamics of this pair
has changed and that the model of it is incorrect. To encourage behavior that tests
long-untried actions, a special “bonus reward” is given on simulated experiences involving
these actions. In particular, if the modeled reward for a transition is r, and the transition
has not been tried in 7 time steps, then planning updates are done as if that transition
produced a reward of r + k/7, for some small k. This encourages the agent to keep
testing all accessible state transitions and even to find long sequences of actions in order
to carry out such tests.! Of course all this testing has its cost, but in many cases, as in the
shortcut maze, this kind of computational curiosity is well worth the extra exploration.

Exercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking and shortcut
experiments? O

Ezxercise 8.8 Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+
and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason
for this? O

Ezxercise 8.4 (programming) The exploration bonus described above actually changes
the estimated values of states and actions. Is this necessary? Suppose the bonus x+/7
was used not in updates, but solely in action selection. That is, suppose the action
selected was always that for which Q(S, a) + k+/7(St, a) was maximal. Carry out a
gridworld experiment that tests and illustrates the strengths and weaknesses of this
alternate approach. O

Ezercise 8.5 How might the tabular Dyna-Q algorithm shown on page 164 be modified
to handle stochastic environments? How might this modification perform poorly on
changing environments such as considered in this section? How could the algorithm be
modified to handle stochastic environments and changing environments? O

8.4 Prioritized Sweeping

In the Dyna agents presented in the preceding sections, simulated transitions are started in
state—action pairs selected uniformly at random from all previously experienced pairs. But
a uniform selection is usually not the best; planning can be much more efficient if simulated
transitions and updates are focused on particular state—action pairs. For example, consider

1The Dyna-Q+ agent was changed in two other ways as well. First, actions that had never been
tried before from a state were allowed to be considered in the planning step (f) of the Tabular Dyna-Q
algorithm in the box above. Second, the initial model for such actions was that they would lead back to
the same state with a reward of zero.
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what happens during the second episode of the first maze task (Figure 8.3). At the
beginning of the second episode, only the state—action pair leading directly into the goal
has a positive value; the values of all other pairs are still zero. This means that it is
pointless to perform updates along almost all transitions, because they take the agent
from one zero-valued state to another, and thus the updates would have no effect. Only
an update along a transition into the state just prior to the goal, or from it, will change
any values. If simulated transitions are generated uniformly, then many wasteful updates
will be made before stumbling onto one of these useful ones. As planning progresses, the
region of useful updates grows, but planning is still far less efficient than it would be if
focused where it would do the most good. In the much larger problems that are our real
objective, the number of states is so large that an unfocused search would be extremely
inefficient.

This example suggests that search might be usefully focused by working backward from
goal states. Of course, we do not really want to use any methods specific to the idea of
“goal state.” We want methods that work for general reward functions. Goal states are
just a special case, convenient for stimulating intuition. In general, we want to work back
not just from goal states but from any state whose value has changed. Suppose that the
values are initially correct given the model, as they were in the maze example prior to
discovering the goal. Suppose now that the agent discovers a change in the environment
and changes its estimated value of one state, either up or down. Typically, this will imply
that the values of many other states should also be changed, but the only useful one-step
updates are those of actions that lead directly into the one state whose value has been
changed. If the values of these actions are updated, then the values of the predecessor
states may change in turn. If so, then actions leading into them need to be updated, and
then their predecessor states may have changed. In this way one can work backward
from arbitrary states that have changed in value, either performing useful updates or
terminating the propagation. This general idea might be termed backward focusing of
planning computations.

As the frontier of useful updates propagates backward, it often grows rapidly, producing
many state—action pairs that could usefully be updated. But not all of these will be
equally useful. The values of some states may have changed a lot, whereas others may
have changed little. The predecessor pairs of those that have changed a lot are more
likely to also change a lot. In a stochastic environment, variations in estimated transition
probabilities also contribute to variations in the sizes of changes and in the urgency with
which pairs need to be updated. It is natural to prioritize the updates according to a
measure of their urgency, and perform them in order of priority. This is the idea behind
prioritized sweeping. A queue is maintained of every state—action pair whose estimated
value would change nontrivially if updated , prioritized by the size of the change. When
the top pair in the queue is updated, the effect on each of its predecessor pairs is computed.
If the effect is greater than some small threshold, then the pair is inserted in the queue
with the new priority (if there is a previous entry of the pair in the queue, then insertion
results in only the higher priority entry remaining in the queue). In this way the effects
of changes are efficiently propagated backward until quiescence. The full algorithm for
the case of deterministic environments is given in the box on the next page.
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Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s,a), for all s, a, and PQueue to empty
Loop forever:
(a) S « current (nonterminal) state

b) A < policy(S, Q)
¢) Take action A; observe resultant reward, R, and state, S’
d) Model(S,A) + R, S’

)
)

P <+ |R + ymax, Q(S’,a) — Q(S, 4)|.
f) if P > 0, then insert S, A into PQueue with priority P
g) Loop repeat n times, while PQueue is not empty:
S, A < first(PQueue)
R, S’ < Model(S, A)
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R « predicted reward for S, A, S
P+ |R + ymax, Q(S,a) — Q(S, A)|.
if P > 0 then insert S, A into PQueue with priority P

(
(
(
(e
(
(

Example 8.4: Prioritized Sweeping
on Mazes Prioritized sweeping has been 107
found to dramatically increase the speed

at which optimal solutions are found in 10 Dyna-Q
magze tasks, often by a factor of 5 to 10. S

A typical example is shown to the right. Updates 7

These data are for a sequence of maze until 104 Prioritized
tasks of exactly the same structure as the  optimal sweeping

one shown in Figure 8.2, except that they — solution o3
vary in the grid resolution. Prioritized

sweeping maintained a decisive advantage 107

over unprioritized Dyna-Q. Both systems 0 S
made at most n = 5 updates per environ- 0 47 94 186 376 752 1504 3008 6016
mental interaction. Adapted from Peng Gridworld size (#states)

and Williams (1993). []

Extensions of prioritized sweeping to stochastic environments are straightforward. The
model is maintained by keeping counts of the number of times each state—action pair has
been experienced and of what the next states were. It is natural then to update each pair
not with a sample update, as we have been using so far, but with an expected update,
taking into account all possible next states and their probabilities of occurring.

Prioritized sweeping is just one way of distributing computations to improve planning
efficiency, and probably not the best way. One of prioritized sweeping’s limitations is that
it uses expected updates, which in stochastic environments may waste lots of computation
on low-probability transitions. As we show in the following section, sample updates
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Example 8.5 Prioritized Sweeping for Rod Maneuvering

The objective in this task is to
maneuver a rod around some awk-
wardly placed obstacles within a
limited rectangular work space to a
goal position in the fewest number
of steps. The rod can be translated
along its long axis or perpendicu-
lar to that axis, or it can be ro-
tated in either direction around its
center. The distance of each move-
ment is approximately 1/20 of the
work space, and the rotation incre-
ment is 10 degrees. Translations
are deterministic and quantized to
one of 20 x 20 positions. To the
right is shown the obstacles and the
shortest solution from start to goal,
found by prioritized sweeping. This problem is deterministic, but has four actions
and 14,400 potential states (some of these are unreachable because of the obstacles).
This problem is probably too large to be solved with unprioritized methods. Figure
reprinted from Moore and Atkeson (1993).

can in many cases get closer to the true value function with less computation despite
the variance introduced by sampling. Sample updates can win because they break the
overall backing-up computation into smaller pieces—those corresponding to individual
transitions—which then enables it to be focused more narrowly on the pieces that will
have the largest impact. This idea was taken to what may be its logical limit in the “small
backups” introduced by van Seijen and Sutton (2013). These are updates along a single
transition, like a sample update, but based on the probability of the transition without
sampling, as in an expected update. By selecting the order in which small updates
are done it is possible to greatly improve planning efficiency beyond that possible with
prioritized sweeping.

We have suggested in this chapter that all kinds of state-space planning can be viewed
as sequences of value updates, varying only in the type of update, expected or sample,
large or small, and in the order in which the updates are done. In this section we have
emphasized backward focusing, but this is just one strategy. For example, another would
be to focus on states according to how easily they can be reached from the states that
are visited frequently under the current policy, which might be called forward focusing.
Peng and Williams (1993) and Barto, Bradtke and Singh (1995) have explored versions
of forward focusing, and the methods introduced in the next few sections take it to an
extreme form.
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8.5 Expected vs. Sample Updates

The examples in the previous sections give some idea of the range of possibilities for
combining methods of learning and planning. In the rest of this chapter, we analyze some
of the component ideas involved, starting with the relative advantages of expected and
sample updates.

Much of this book has been about different kinds of value-function updates, and we
have considered a great many varieties. Focusing for the moment on one-step updates,
they vary primarily along three binary dimensions. The first two dimensions are whether
they update state values or action values and whether they estimate the value for the
optimal policy or for an arbitrary given policy. These two dimensions give rise to four
classes of updates for approximating the four value functions, g, v«, ¢r, and v;. The

other binary dimension is whether the
updates are expected updates, consider-
ing all possible events that might hap-
pen, or sample updates, considering a
single sample of what might happen.
These three binary dimensions give rise
to eight cases, seven of which corre-
spond to specific algorithms, as shown
in the figure to the right. (The eighth
case does not seem to correspond to
any useful update.) Any of these one-
step updates can be used in planning
methods. The Dyna-Q agents discussed
earlier use ¢. sample updates, but they
could just as well use g, expected up-
dates, or either expected or sample ¢,
updates. The Dyna-AC system uses v,
sample updates together with a learning
policy structure (as in Chapter 13). For
stochastic problems, prioritized sweep-
ing is always done using one of the ex-
pected updates.

When we introduced one-step sam-
ple updates in Chapter 6, we presented
them as substitutes for expected up-
dates. In the absence of a distribution
model, expected updates are not pos-
sible, but sample updates can be done
using sample transitions from the envi-
ronment or a sample model. Implicit in
that point of view is that expected up-
dates, if possible, are preferable to sam-
ple updates. But are they? Expected
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Figure 8.6: Backup diagrams for all the one-step

updates considered in this book.
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updates certainly yield a better estimate because they are uncorrupted by sampling error,
but they also require more computation, and computation is often the limiting resource
in planning. To properly assess the relative merits of expected and sample updates for
planning we must control for their different computational requirements.

For concreteness, consider the expected and sample updates for approximating g,
and the special case of discrete states and actions, a table-lookup representation of
the approximate value function, @, and a model in the form of estimated dynamics,
p(s’,7|s,a). The expected update for a state—action pair, s, a, is:

Q(s,a) « Zﬁ(s',r|s,a) |:’I“—|—’}/H}3XQ(S/,CL/):|. (8.1)

s',r

The corresponding sample update for s, a, given a sample next state and reward, S’ and
R (from the model), is the Q-learning-like update:

Q(s,a) < Q(s,a) + a[R + 7y max Q(S',ad") — Q(s, a)}, (8.2)

where « is the usual positive step-size parameter.

The difference between these expected and sample updates is significant to the extent
that the environment is stochastic, specifically, to the extent that, given a state and
action, many possible next states may occur with various probabilities. If only one next
state is possible, then the expected and sample updates given above are identical (taking
a =1). If there are many possible next states, then there may be significant differences.
In favor of the expected update is that it is an exact computation, resulting in a new
Q(s,a) whose correctness is limited only by the correctness of the Q(s,a’) at successor
states. The sample update is in addition affected by sampling error. On the other hand,
the sample update is cheaper computationally because it considers only one next state,
not all possible next states. In practice, the computation required by update operations
is usually dominated by the number of state—action pairs at which @ is evaluated. For a
particular starting pair, s, a, let b be the branching factor (i.e., the number of possible
next states, s’, for which p(s’|s,a) > 0). Then an expected update of this pair requires
roughly b times as much computation as a sample update.

If there is enough time to complete an expected update, then the resulting estimate is
generally better than that of b sample updates because of the absence of sampling error.
But if there is insufficient time to complete an expected update, then sample updates are
always preferable because they at least make some improvement in the value estimate
with fewer than b updates. In a large problem with many state-action pairs, we are often
in the latter situation. With so many state—action pairs, expected updates of all of them
would take a very long time. Before that we may be much better off with a few sample
updates at many state—action pairs than with expected updates at a few pairs. Given a
unit of computational effort, is it better devoted to a few expected updates or to b times
as many sample updates?

Figure 8.7 shows the results of an analysis that suggests an answer to this question. It
shows the estimation error as a function of computation time for expected and sample
updates for a variety of branching factors, b. The case considered is that in which all
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sample expected
updates updates
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RMS error b =2 (branching factor)
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Figure 8.7: Comparison of efficiency of expected and sample updates.

b successor states are equally likely and in which the error in the initial estimate is
1. The values at the next states are assumed correct, so the expected update reduces
the error to zero upon its completion. In this case, sample updates reduce the error

according to bg—tl where t is the number of sample updates that have been performed

(assuming sample averages, i.e., « = 1/t). The key observation is that for moderately
large b the error falls dramatically with a tiny fraction of b updates. For these cases,
many state—action pairs could have their values improved dramatically, to within a few
percent of the effect of an expected update, in the same time that a single state—action
pair could undergo an expected update.

The advantage of sample updates shown in Figure 8.7 is probably an underestimate of
the real effect. In a real problem, the values of the successor states would be estimates
that are themselves updated. By causing estimates to be more accurate sooner, sample
updates will have a second advantage in that the values backed up from the successor
states will be more accurate. These results suggest that sample updates are likely to be
superior to expected updates on problems with large stochastic branching factors and
too many states to be solved exactly.

Exercise 8.6 The analysis above assumed that all of the b possible next states were
equally likely to occur. Suppose instead that the distribution was highly skewed, that
some of the b states were much more likely to occur than most. Would this strengthen or
weaken the case for sample updates over expected updates? Support your answer. [

8.6 Trajectory Sampling
In this section we compare two ways of distributing updates. The classical approach, from

dynamic programming, is to perform sweeps through the entire state (or state-action)
space, updating each state (or state—action pair) once per sweep. This is problematic
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on large tasks because there may not be time to complete even one sweep. In many
tasks the vast majority of the states are irrelevant because they are visited only under
very poor policies or with very low probability. Exhaustive sweeps implicitly devote
equal time to all parts of the state space rather than focusing where it is needed. As we
discussed in Chapter 4, exhaustive sweeps and the equal treatment of all states that they
imply are not necessary properties of dynamic programming. In principle, updates can
be distributed any way one likes (to assure convergence, all states or state—action pairs
must be visited in the limit an infinite number of times; although an exception to this is
discussed in Section 8.7 below), but in practice exhaustive sweeps are often used.

The second approach is to sample from the state or state—action space according
to some distribution. One could sample uniformly, as in the Dyna-Q agent, but this
would suffer from some of the same problems as exhaustive sweeps. More appealing
is to distribute updates according to the on-policy distribution, that is, according to
the distribution observed when following the current policy. One advantage of this
distribution is that it is easily generated; one simply interacts with the model, following
the current policy. In an episodic task, one starts in a start state (or according to the
starting-state distribution) and simulates until the terminal state. In a continuing task,
one starts anywhere and just keeps simulating. In either case, sample state transitions
and rewards are given by the model, and sample actions are given by the current policy.
In other words, one simulates explicit individual trajectories and performs updates at the
state or state—action pairs encountered along the way. We call this way of generating
experience and updates trajectory sampling.

It is hard to imagine any efficient way of distributing updates according to the on-policy
distribution other than by trajectory sampling. If one had an explicit representation
of the on-policy distribution, then one could sweep through all states, weighting the
update of each according to the on-policy distribution, but this leaves us again with all
the computational costs of exhaustive sweeps. Possibly one could sample and update
individual state—action pairs from the distribution, but even if this could be done efficiently,
what benefit would this provide over simulating trajectories? Even knowing the on-policy
distribution in an explicit form is unlikely. The distribution changes whenever the policy
changes, and computing the distribution requires computation comparable to a complete
policy evaluation. Consideration of such other possibilities makes trajectory sampling
seem both efficient and elegant.

Is the on-policy distribution of updates a good one? Intuitively it seems like a good
choice, at least better than the uniform distribution. For example, if you are learning to
play chess, you study positions that might arise in real games, not random positions of
chess pieces. The latter may be valid states, but to be able to accurately value them is a
different skill from evaluating positions in real games. We will also see in Part II that the
on-policy distribution has significant advantages when function approximation is used.
Whether or not function approximation is used, one might expect on-policy focusing to
significantly improve the speed of planning.

Focusing on the on-policy distribution could be beneficial because it causes vast,
uninteresting parts of the space to be ignored, or it could be detrimental because it causes
the same old parts of the space to be updated over and over. We conducted a small
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experiment to assess the effect empirically. To isolate the effect of the update distribution,
we used entirely one-step expected tabular updates, as defined by (8.1). In the uniform
case, we cycled through all state—action pairs, updating each in place, and in the on-policy
case we simulated episodes, all starting in the same state, updating each state—action pair
that occurred under the current e-greedy policy (¢=0.1). The tasks were undiscounted
episodic tasks, generated randomly as follows. From each of the |§| states, two actions
were possible, each of which resulted in one of b next states, all equally likely, with a
different random selection of b states for each state—action pair. The branching factor, b,
was the same for all state—action pairs. In addition, on all transitions there was a 0.1
probability of transition to the terminal state, ending the episode. The expected reward
on each transition was selected from a Gaussian distribution with mean 0 and variance 1.
At any point in the planning process

one can stop and exhaustively compute

v#(80), the true value of the start state N
under the greedy policy, 7, given the cur-

rent action-value function (), as an indi-

cation of how well the agent would doon  vajue of -
a new episode on which it acted greed- start state
ily (all the while assuming the model is under

greedy
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The upper part of the figure to
the right shows results averaged over
200 sample tasks with 1000 states and
branching factors of 1, 3, and 10. The
quality of the policies found is plotted as
a function of the number of expected up-
dates completed. In all cases, sampling
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resulted in faster planning initially and
retarded planning in the long run. The 10,000 STATES
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the start state. If there are many states and a small branching factor, this effect will be
large and long-lasting. In the long run, focusing on the on-policy distribution may hurt
because the commonly occurring states all already have their correct values. Sampling
them is useless, whereas sampling other states may actually perform some useful work.
This presumably is why the exhaustive, unfocused approach does better in the long run,
at least for small problems. These results are not conclusive because they are only for
problems generated in a particular, random way, but they do suggest that sampling
according to the on-policy distribution can be a great advantage for large problems, in
particular for problems in which a small subset of the state—action space is visited under
the on-policy distribution.

Ezxercise 8.7 Some of the graphs in Figure 8.8 seem to be scalloped in their early portions,
particularly the upper graph for b = 1 and the uniform distribution. Why do you think
this is? What aspects of the data shown support your hypothesis? O

Ezxercise 8.8 (programming) Replicate the experiment whose results are shown in the
lower part of Figure 8.8, then try the same experiment but with b = 3. Discuss the
meaning of your results. O

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of
the value-iteration algorithm of dynamic programming (DP). Because it is closely related
to conventional sweep-based policy iteration, RTDP illustrates in a particularly clear way
some of the advantages that on-policy trajectory sampling can provide. RTDP updates
the values of states visited in actual or simulated trajectories by means of expected
tabular value-iteration updates as defined by (4.10). It is basically the algorithm that
produced the on-policy results shown in Figure 8.8.

The close connection between RTDP and conventional DP makes it possible to derive
some theoretical results by adapting existing theory. RTDP is an example of an asyn-
chronous DP algorithm as described in Section 4.5. Asynchronous DP algorithms are
not organized in terms of systematic sweeps of the state set; they update state values in
any order whatsoever, using whatever values of other states happen to be available. In
RTDP, the update order is dictated by the order states are visited in real or simulated
trajectories.

If trajectories can start only from a designated Irrelevant States:
set of start states, and if you are interested in unreachable from any start state
the prediction problem for a given policy, then on- Start States under any optimal policy
policy trajectory sampling allows the algorithm to
completely skip states that cannot be reached by
the given policy from any of the start states: such
states are irrelevant to the prediction problem.

For a control problem, where the goal is to find
an optimal policy instead of evaluating a given reachagl?frxinstoit:if:n stato
policy, there might well be states that cannot be under some optimal policy
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reached by any optimal policy from any of the start states, and there is no need to specify
optimal actions for these irrelevant states. What is needed is an optimal partial policy,
meaning a policy that is optimal for the relevant states but can specify arbitrary actions,
or even be undefined, for the irrelevant states.

But finding such an optimal partial policy with an on-policy trajectory-sampling
control method, such as Sarsa (Section 6.4), in general requires visiting all state—action
pairs—even those that will turn out to be irrelevant—an infinite number of times. This
can be done, for example, by using exploring starts (Section 5.3). This is true for RTDP
as well: for episodic tasks with exploring starts, RTDP is an asynchronous value-iteration
algorithm that converges to optimal polices for discounted finite MDPs (and for the
undiscounted case under certain conditions). Unlike the situation for a prediction problem,
it is generally not possible to stop updating any state or state—action pair if convergence
to an optimal policy is important.

The most interesting result for RTDP is that for certain types of problems satisfying
reasonable conditions, RTDP is guaranteed to find a policy that is optimal on the relevant
states without visiting every state infinitely often, or even without visiting some states at
all. Indeed, in some problems, only a small fraction of the states need to be visited. This
can be a great advantage for problems with very large state sets, where even a single
sweep may not be feasible.

The tasks for which this result holds are undiscounted episodic tasks for MDPs with
absorbing goal states that generate zero rewards, as described in Section 3.4. At every step
of a real or simulated trajectory, RTDP selects a greedy action (breaking ties randomly)
and applies the expected value-iteration update operation to the current state. It can
also update the values of an arbitrary collection of other states at each step; for example,
it can update the values of states visited in a limited-horizon look-ahead search from the
current state.

For these problems, with each episode beginning in a state randomly chosen from the
set of start states and ending at a goal state, RTDP converges with probability one to a
policy that is optimal for all the relevant states provided: 1) the initial value of every
goal state is zero, 2) there exists at least one policy that guarantees that a goal state
will be reached with probability one from any start state, 3) all rewards for transitions
from non-goal states are strictly negative, and 4) all the initial values are equal to, or
greater than, their optimal values (which can be satisfied by simply setting the initial
values of all states to zero). This result was proved by Barto, Bradtke, and Singh (1995)
by combining results for asynchronous DP with results about a heuristic search algorithm
known as learning real-time A* due to Korf (1990).

Tasks having these properties are examples of stochastic optimal path problems, which
are usually stated in terms of cost minimization instead of as reward maximization as
we do here. Maximizing the negative returns in our version is equivalent to minimizing
the costs of paths from a start state to a goal state. Examples of this kind of task are
minimum-time control tasks, where each time step required to reach a goal produces a
reward of —1, or problems like the Golf example in Section 3.5, whose objective is to hit
the hole with the fewest strokes.
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Example 8.6: RTDP on the Racetrack The racetrack problem of Exercise 5.12
(page 111) is a stochastic optimal path problem. Comparing RTDP and the conventional
DP value iteration algorithm on an example racetrack problem illustrates some of the
advantages of on-policy trajectory sampling.

Recall from the exercise that an agent has to learn how to drive a car around a turn
like those shown in Figure 5.5 and cross the finish line as quickly as possible while staying
on the track. Start states are all the zero-speed states on the starting line; the goal states
are all the states that can be reached in one time step by crossing the finish line from
inside the track. Unlike Exercise 5.12, here there is no limit on the car’s speed, so the
state set is potentially infinite. However, the set of states that can be reached from the
set of start states via any policy is finite and can be considered to be the state set of the
problem. Each episode begins in a randomly selected start state and ends when the car
crosses the finish line. The rewards are —1 for each step until the car crosses the finish
line. If the car hits the track boundary, it is moved back to a random start state, and the
episode continues.

A racetrack similar to the small racetrack on the left of Figure 5.5 has 9,115 states
reachable from start states by any policy, only 599 of which are relevant, meaning that
they are reachable from some start state via some optimal policy. (The number of relevant
states was estimated by counting the states visited while executing optimal actions for
107 episodes.)

The table below compares solving this task by conventional DP and by RTDP. These
results are averages over 25 runs, each begun with a different random number seed.
Conventional DP in this case is value iteration using exhaustive sweeps of the state set,
with values updated one state at a time in place, meaning that the update for each state
uses the most recent values of the other states (This is the Gauss-Seidel version of value
iteration, which was found to be approximately twice as fast as the Jacobi version on
this problem. See Section 4.8.) No special attention was paid to the ordering of the
updates; other orderings could have produced faster convergence. Initial values were all
zero for each run of both methods. DP was judged to have converged when the maximum
change in a state value over a sweep was less than 104, and RTDP was judged to have
converged when the average time to cross the finish line over 20 episodes appeared to
stabilize at an asymptotic number of steps. This version of RTDP updated only the value
of the current state on each step.

DP RTDP
Average computation to convergence 28 sweeps 4000 episodes
Average number of updates to convergence 252,784 127,600
Average number of updates per episode — 31.9
% of states updated < 100 times — 98.45
% of states updated < 10 times — 80.51
% of states updated 0 times — 3.18

Both methods produced policies averaging between 14 and 15 steps to cross the finish
line, but RTDP required only roughly half of the updates that DP did. This is the result
of RTDP’s on-policy trajectory sampling. Whereas the value of every state was updated
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in each sweep of DP, RTDP focused updates on fewer states. In an average run, RTDP
updated the values of 98.45% of the states no more than 100 times and 80.51% of the
states no more than 10 times; the values of about 290 states were not updated at all in
an average run. ]

Another advantage of RTDP is that as the value function approaches the optimal
value function v,, the policy used by the agent to generate trajectories approaches an
optimal policy because it is always greedy with respect to the current value function.
This is in contrast to the situation in conventional value iteration. In practice, value
iteration terminates when the value function changes by only a small amount in a sweep,
which is how we terminated it to obtain the results in the table above. At this point,
the value function closely approximates v,, and a greedy policy is close to an optimal
policy. However, it is possible that policies that are greedy with respect to the latest
value function were optimal, or nearly so, long before value iteration terminates. (Recall
from Chapter 4 that optimal policies can be greedy with respect to many different
value functions, not just v,.) Checking for the emergence of an optimal policy before
value iteration converges is not a part of the conventional DP algorithm and requires
considerable additional computation.

In the racetrack example, by running many test episodes after each DP sweep, with
actions selected greedily according to the result of that sweep, it was possible to estimate
the earliest point in the DP computation at which the approximated optimal evaluation
function was good enough so that the corresponding greedy policy was nearly optimal.
For this racetrack, a close-to-optimal policy emerged after 15 sweeps of value iteration, or
after 136,725 value-iteration updates. This is considerably less than the 252,784 updates
DP needed to converge to v, but sill more than the 127,600 updates RTDP required.

Although these simulations are certainly not definitive comparisons of the RTDP with
conventional sweep-based value iteration, they illustrate some of advantages of on-policy
trajectory sampling. Whereas conventional value iteration continued to update the value
of all the states, RTDP strongly focused on subsets of the states that were relevant to
the problem’s objective. This focus became increasingly narrow as learning continued.
Because the convergence theorem for RTDP applies to the simulations, we know that
RTDP eventually would have focused only on relevant states, i.e., on states making up
optimal paths. RTDP achieved nearly optimal control with about 50% of the computation
required by sweep-based value iteration.

8.8 Planning at Decision Time

Planning can be used in at least two ways. The one we have considered so far in this
chapter, typified by dynamic programming and Dyna, is to use planning to gradually
improve a policy or value function on the basis of simulated experience obtained from
a model (either a sample or a distribution model). Selecting actions is then a matter
of comparing the current state’s action values obtained from a table in the tabular
case we have thus far considered, or by evaluating a mathematical expression in the
approximate methods we consider in Part IT below. Well before an action is selected for
any current state Sy, planning has played a part in improving the table entries, or the
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mathematical expression, needed to select the action for many states, including S;. Used
this way, planning is not focussed on the current state. We call planning used in this way
background planning.

The other way to use planning is to begin and complete it after encountering each
new state S;, as a computation whose output is the selection of a single action A;; on
the next step planning begins anew with Siy1 to produce As41, and so on. The simplest,
and almost degenerate, example of this use of planning is when only state values are
available, and an action is selected by comparing the values of model-predicted next states
for each action (or by comparing the values of afterstates as in the tic-tac-toe example
in Chapter 1). More generally, planning used in this way can look much deeper than
one-step-ahead and evaluate action choices leading to many different predicted state and
reward trajectories. Unlike the first use of planning, here planning focuses on a particular
state. We call this deciston-time planning.

These two ways of thinking about planning—using simulated experience to gradually
improve a policy or value function, or using simulated experience to select an action for
the current state—can blend together in natural and interesting ways, but they have
tended to be studied separately, and that is a good way to first understand them. Let us
now take a closer look at decision-time planning.

Even when planning is only done at decision time, we can still view it, as we did
in Section 8.1, as proceeding from simulated experience to updates and values, and
ultimately to a policy. It is just that now the values and policy are specific to the current
state and the action choices available there, so much so that the values and policy created
by the planning process are typically discarded after being used to select the current
action. In many applications this is not a great loss because there are very many states
and we are unlikely to return to the same state for a long time. In general, one may
want to do a mix of both: focus planning on the current state and store the results
of planning so as to be that much farther along should one return to the same state
later. Decision-time planning is most useful in applications in which fast responses are
not required. In chess playing programs, for example, one may be permitted seconds or
minutes of computation for each move, and strong programs may plan dozens of moves
ahead within this time. On the other hand, if low latency action selection is the priority,
then one is generally better off doing planning in the background to compute a policy
that can then be rapidly applied to each newly encountered state.

8.9 Heuristic Search

The classical state-space planning methods in artificial intelligence are decision-time
planning methods collectively known as heuristic search. In heuristic search, for each
state encountered, a large tree of possible continuations is considered. The approximate
value function is applied to the leaf nodes and then backed up toward the current state
at the root. The backing up within the search tree is just the same as in the expected
updates with maxes (those for v, and ¢.) discussed throughout this book. The backing
up stops at the state—action nodes for the current state. Once the backed-up values of
these nodes are computed, the best of them is chosen as the current action, and then all
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backed-up values are discarded.

In conventional heuristic search no effort is made to save the backed-up values by
changing the approximate value function. In fact, the value function is generally designed
by people and never changed as a result of search. However, it is natural to consider
allowing the value function to be improved over time, using either the backed-up values
computed during heuristic search or any of the other methods presented throughout
this book. In a sense we have taken this approach all along. Our greedy, e-greedy, and
UCB (Section 2.7) action-selection methods are not unlike heuristic search, albeit on a
smaller scale. For example, to compute the greedy action given a model and a state-value
function, we must look ahead from each possible action to each possible next state, take
into account the rewards and estimated values, and then pick the best action. Just as
in conventional heuristic search, this process computes backed-up values of the possible
actions, but does not attempt to save them. Thus, heuristic search can be viewed as an
extension of the idea of a greedy policy beyond a single step.

The point of searching deeper than one step is to obtain better action selections. If one
has a perfect model and an imperfect action-value function, then in fact deeper search
will usually yield better policies.? Certainly, if the search is all the way to the end of
the episode, then the effect of the imperfect value function is eliminated, and the action
determined in this way must be optimal. If the search is of sufficient depth k such that +*
is very small, then the actions will be correspondingly near optimal. On the other hand,
the deeper the search, the more computation is required, usually resulting in a slower
response time. A good example is provided by Tesauro’s grandmaster-level backgammon
player, TD-Gammon (Section 16.1). This system used TD learning to learn an afterstate
value function through many games of self-play, using a form of heuristic search to make
its moves. As a model, TD-Gammon used a priori knowledge of the probabilities of dice
rolls and the assumption that the opponent always selected the actions that TD-Gammon
rated as best for it. Tesauro found that the deeper the heuristic search, the better the
moves made by TD-Gammon, but the longer it took to make each move. Backgammon
has a large branching factor, yet moves must be made within a few seconds. It was
only feasible to search ahead selectively a few steps, but even so the search resulted in
significantly better action selections.

We should not overlook the most obvious way in which heuristic search focuses updates:
on the current state. Much of the effectiveness of heuristic search is due to its search tree
being tightly focused on the states and actions that might immediately follow the current
state. You may spend more of your life playing chess than checkers, but when you play
checkers, it pays to think about checkers and about your particular checkers position,
your likely next moves, and successor positions. No matter how you select actions, it
is these states and actions that are of highest priority for updates and where you most
urgently want your approximate value function to be accurate. Not only should your
computation be preferentially devoted to imminent events, but so should your limited
memory resources. In chess, for example, there are far too many possible positions to
store distinct value estimates for each of them, but chess programs based on heuristic
search can easily store distinct estimates for the millions of positions they encounter

2There are interesting exceptions to this (see, e.g., Pearl, 1984).
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looking ahead from a single position. This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search can be so
effective.

The distribution of updates can be altered in similar ways to focus on the current
state and its likely successors. As a limiting case we might use exactly the methods of
heuristic search to construct a search tree, and then perform the individual, one-step
updates from bottom up, as suggested by Figure 8.9. If the updates are ordered in this
way and a tabular representation is used, then exactly the same overall update would
be achieved as in depth-first heuristic search. Any state-space search can be viewed in
this way as the piecing together of a large number of individual one-step updates. Thus,
the performance improvement observed with deeper searches is not due to the use of
multistep updates as such. Instead, it is due to the focus and concentration of updates
on states and actions immediately downstream from the current state. By devoting a
large amount of computation specifically relevant to the candidate actions, decision-time
planning can produce better decisions than can be produced by relying on unfocused
updates.
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Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

8.10 Rollout Algorithms

Rollout algorithms are decision-time planning algorithms based on Monte Carlo control
applied to simulated trajectories that all begin at the current environment state. They
estimate action values for a given policy by averaging the returns of many simulated
trajectories that start with each possible action and then follow the given policy. When
the action-value estimates are considered to be accurate enough, the action (or one of the
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actions) having the highest estimated value is executed, after which the process is carried
out anew from the resulting next state. As explained by Tesauro and Galperin (1997),
who experimented with rollout algorithms for playing backgammon, the term “rollout”
comes from estimating the value of a backgammon position by playing out, i.e., “rolling
out,” the position many times to the game’s end with randomly generated sequences of
dice rolls, where the moves of both players are made by some fixed policy.

Unlike the Monte Carlo control algorithms described in Chapter 5, the goal of a
rollout algorithm is not to estimate a complete optimal action-value function, ¢, or a
complete action-value function, ¢,, for a given policy w. Instead, they produce Monte
Carlo estimates of action values only for each current state and for a given policy usually
called the rollout policy. As decision-time planning algorithms, rollout algorithms make
immediate use of these action-value estimates, then discard them. This makes rollout
algorithms relatively simple to implement because there is no need to sample outcomes
for every state-action pair, and there is no need to approximate a function over either
the state space or the state-action space.

What then do rollout algorithms accomplish? The policy improvement theorem
described in Section 4.2 tells us that given any two policies 7 and 7’ that are identical
except that 7'(s) = a # 7(s) for some state s, if ¢, (s,a) > v.(s), then policy 7’ is as good
as, or better, than . Moreover, if the inequality is strict, then #’ is in fact better than .
This applies to rollout algorithms where s is the current state and 7 is the rollout policy.
Averaging the returns of the simulated trajectories produces estimates of ¢, (s,a’) for
each action a’ € A(s). Then the policy that selects an action in s that maximizes these
estimates and thereafter follows 7 is a good candidate for a policy that improves over
7. The result is like one step of the policy-iteration algorithm of dynamic programming
discussed in Section 4.3 (though it is more like one step of asynchronous value iteration
described in Section 4.5 because it changes the action for just the current state).

In other words, the aim of a rollout algorithm is to improve upon the rollout policy;
not to find an optimal policy. Experience has shown that rollout algorithms can be
surprisingly effective. For example, Tesauro and Galperin (1997) were surprised by the
dramatic improvements in backgammon playing ability produced by the rollout method.
In some applications, a rollout algorithm can produce good performance even if the
rollout policy is completely random. But the performance of the improved policy depends
on properties of the rollout policy and the ranking of actions produced by the Monte
Carlo value estimates. Intuition suggests that the better the rollout policy and the more
accurate the value estimates, the better the policy produced by a rollout algorithm is
likely be (but see Gelly and Silver, 2007).

This involves important tradeoffs because better rollout policies typically mean that
more time is needed to simulate enough trajectories to obtain good value estimates.
As decision-time planning methods, rollout algorithms usually have to meet strict time
constraints. The computation time needed by a rollout algorithm depends on the number
of actions that have to be evaluated for each decision, the number of time steps in the
simulated trajectories needed to obtain useful sample returns, the time it takes the rollout
policy to make decisions, and the number of simulated trajectories needed to obtain good
Monte Carlo action-value estimates.
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Balancing these factors is important in any application of rollout methods, though there
are several ways to ease the challenge. Because the Monte Carlo trials are independent of
one another, it is possible to run many trials in parallel on separate processors. Another
approach is to truncate the simulated trajectories short of complete episodes, correcting
the truncated returns by means of a stored evaluation function (which brings into play
all that we have said about truncated returns and updates in the preceding chapters).
It is also possible, as Tesauro and Galperin (1997) suggest, to monitor the Monte Carlo
simulations and prune away candidate actions that are unlikely to turn out to be the
best, or whose values are close enough to that of the current best that choosing them
instead would make no real difference (though Tesauro and Galperin point out that this
would complicate a parallel implementation).

We do not ordinarily think of rollout algorithms as learning algorithms because they
do not maintain long-term memories of values or policies. However, these algorithms take
advantage of some of the features of reinforcement learning that we have emphasized
in this book. As instances of Monte Carlo control, they estimate action values by
averaging the returns of a collection of sample trajectories, in this case trajectories of
simulated interactions with a sample model of the environment. In this way they are
like reinforcement learning algorithms in avoiding the exhaustive sweeps of dynamic
programming by trajectory sampling, and in avoiding the need for distribution models
by relying on sample, instead of expected, updates. Finally, rollout algorithms take
advantage of the policy improvement property by acting greedily with respect to the
estimated action values.

8.11 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a recent and strikingly successful example of decision-
time planning. At its base, MCTS is a rollout algorithm as described above, but enhanced
by the addition of a means for accumulating value estimates obtained from the Monte
Carlo simulations in order to successively direct simulations toward more highly-rewarding
trajectories. MCTS is largely responsible for the improvement in computer Go from
a weak amateur level in 2005 to a grandmaster level (6 dan or more) in 2015. Many
variations of the basic algorithm have been developed, including a variant that we discuss
in Section 16.6 that was critical for the stunning 2016 victories of the program AlphaGo
over an 18-time world champion Go player. MCTS has proved to be effective in a wide
variety of competitive settings, including general game playing (e.g., see Finnsson and
Bjornsson, 2008; Genesereth and Thielscher, 2014), but it is not limited to games; it can
be effective for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation.

MCTS is executed after encountering each new state to select the agent’s action for
that state; it is executed again to select the action for the next state, and so on. As in a
rollout algorithm, each execution is an iterative process that simulates many trajectories
starting from the current state and running to a terminal state (or until discounting
makes any further reward negligible as a contribution to the return). The core idea
of MCTS is to successively focus multiple simulations starting at the current state by
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extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state—action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state—action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results of
the simulated trajectories. Any simulated trajectory will pass through the tree and then
exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is used
for action selections, but at the states inside the tree something better is possible. For
these states we have value estimates for of at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration
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Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).



8.11. Monte Carlo Tree Search 187

and exploitation. For example, the tree policy could select actions using an e-greedy or
UCB selection rule (Chapter 2).

In more detail, each iteration of a basic version of MCTS consists of the following four
steps as illustrated in Figure 8.10:

1. Selection. Starting at the root node, a tree policy based on the action values
attached to the edges of the tree traverses the tree to select a leaf node.

2. Expansion. On some iterations (depending on details of the application), the tree
is expanded from the selected leaf node by adding one or more child nodes reached
from the selected node via unexplored actions.

3. Simulation. From the selected node, or from one of its newly-added child nodes
(if any), simulation of a complete episode is run with actions selected by the rollout
policy. The result is a Monte Carlo trial with actions selected first by the tree
policy and beyond the tree by the rollout policy.

4. Backup. The return generated by the simulated episode is backed up to update,
or to initialize, the action values attached to the edges of the tree traversed by
the tree policy in this iteration of MCTS. No values are saved for the states and
actions visited by the rollout policy beyond the tree. Figure 8.10 illustrates this by
showing a backup from the terminal state of the simulated trajectory directly to the
state—action node in the tree where the rollout policy began (though in general, the
entire return over the simulated trajectory is backed up to this state—action node).

MCTS continues executing these four steps, starting each time at the tree’s root node,
until no more time is left, or some other computational resource is exhausted. Then,
finally, an action from the root node (which still represents the current state of the
environment) is selected according to some mechanism that depends on the accumulated
statistics in the tree; for example, it may be an action having the largest action value
of all the actions available from the root state, or perhaps the action with the largest
visit count to avoid selecting outliers. This is the action MCTS actually selects. After
the environment transitions to a new state, MCTS is run again, sometimes starting
with a tree of a single root node representing the new state, but often starting with a
tree containing any descendants of this node left over from the tree constructed by the
previous execution of MCTS; all the remaining nodes are discarded, along with the action
values associated with them.

MCTS was first proposed to select moves in programs playing two-person competitive
games, such as Go. For game playing, each simulated episode is one complete play of the
game in which both players select actions by the tree and rollout policies. Section 16.6
describes an extension of MCTS used in the AlphaGo program that combines the Monte
Carlo evaluations of MCTS with action values learned by a deep artificial neural network
via self-play reinforcement learning.

Relating MCTS to the reinforcement learning principles we describe in this book
provides some insight into how it achieves such impressive results. At its base, MCTS is
a decision-time planning algorithm based on Monte Carlo control applied to simulations
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that start from the root state; that is, it is a kind of rollout algorithm as described in
the previous section. It therefore benefits from online, incremental, sample-based value
estimation and policy improvement. Beyond this, it saves action-value estimates attached
to the tree edges and updates them using reinforcement learning’s sample updates. This
has the effect of focusing the Monte Carlo trials on trajectories whose initial segments
are common to high-return trajectories previously simulated. Further, by incrementally
expanding the tree, MCTS effectively grows a lookup table to store a partial action-value
function, with memory allocated to the estimated values of state—action pairs visited in
the initial segments of high-yielding sample trajectories. MCTS thus avoids the problem
of globally approximating an action-value function while it retains the benefit of using
past experience to guide exploration.

The striking success of decision-time planning by MCTS has deeply influenced artificial
intelligence, and many researchers are studying modifications and extensions of the basic
procedure for use in both games and single-agent applications.

8.12 Summary of the Chapter

Planning requires a model of the environment. A distribution model consists of the
probabilities of next states and rewards for possible actions; a sample model produces
single transitions and rewards generated according to these probabilities. Dynamic
programming requires a distribution model because it uses expected updates, which involve
computing expectations over all the possible next states and rewards. A sample model,
on the other hand, is what is needed to simulate interacting with the environment during
which sample updates, like those used by many reinforcement learning algorithms, can be
used. Sample models are generally much easier to obtain than distribution models.

We have presented a perspective emphasizing the surprisingly close relationships be-
tween planning optimal behavior and learning optimal behavior. Both involve estimating
the same value functions, and in both cases it is natural to update the estimates incre-
mentally, in a long series of small backing-up operations. This makes it straightforward
to integrate learning and planning processes simply by allowing both to update the same
estimated value function. In addition, any of the learning methods can be converted into
planning methods simply by applying them to simulated (model-generated) experience
rather than to real experience. In this case learning and planning become even more
similar; they are possibly identical algorithms operating on two different sources of
experience.

It is straightforward to integrate incremental planning methods with acting and model-
learning. Planning, acting, and model-learning interact in a circular fashion (as in
the diagram on page 162), each producing what the other needs to improve; no other
interaction among them is either required or prohibited. The most natural approach
is for all processes to proceed asynchronously and in parallel. If the processes must
share computational resources, then the division can be handled almost arbitrarily—by
whatever organization is most convenient and efficient for the task at hand.

In this chapter we have touched upon a number of dimensions of variation among
state-space planning methods. One dimension is the variation in the size of updates. The
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smaller the updates, the more incremental the planning methods can be. Among the
smallest updates are one-step sample updates, as in Dyna. Another important dimension
is the distribution of updates, that is, of the focus of search. Prioritized sweeping focuses
backward on the predecessors of states whose values have recently changed. On-policy
trajectory sampling focuses on states or state—action pairs that the agent is likely to
encounter when controlling its environment. This can allow computation to skip over
parts of the state space that are irrelevant to the prediction or control problem. Real-
time dynamic programming, an on-policy trajectory sampling version of value iteration,
illustrates some of the advantages this strategy has over conventional sweep-based policy
iteration.

Planning can also focus forward from pertinent states, such as states actually encoun-
tered during an agent-environment interaction. The most important form of this is when
planning is done at decision time, that is, as part of the action-selection process. Classical
heuristic search as studied in artificial intelligence is an example of this. Other examples
are rollout algorithms and Monte Carlo Tree Search that benefit from online, incremental,
sample-based value estimation and policy improvement.

8.13 Summary of Part I: Dimensions

This chapter concludes Part I of this book. In it we have tried to present reinforcement
learning not as a collection of individual methods, but as a coherent set of ideas cutting
across methods. Each idea can be viewed as a dimension along which methods vary. The
set of such dimensions spans a large space of possible methods. By exploring this space
at the level of dimensions we hope to obtain the broadest and most lasting understanding.
In this section we use the concept of dimensions in method space to recapitulate the view
of reinforcement learning developed so far in this book.

All of the methods we have explored so far in this book have three key ideas in common:
first, they all seek to estimate value functions; second, they all operate by backing up
values along actual or possible state trajectories; and third, they all follow the general
strategy of generalized policy iteration (GPI), meaning that they maintain an approximate
value function and an approximate policy, and they continually try to improve each on the
basis of the other. These three ideas are central to the subjects covered in this book. We
suggest that value functions, backing up value updates, and GPI are powerful organizing
principles potentially relevant to any model of intelligence, whether artificial or natural.

Two of the most important dimensions along which the methods vary are shown in
Figure 8.11. These dimensions have to do with the kind of update used to improve the
value function. The horizontal dimension is whether they are sample updates (based on a
sample trajectory) or expected updates (based on a distribution of possible trajectories).
Expected updates require a distribution model, whereas sample updates need only a
sample model, or can be done from actual experience with no model at all (another
dimension of variation). The vertical dimension of Figure 8.11 corresponds to the depth
of updates, that is, to the degree of bootstrapping. At three of the four corners of the
space are the three primary methods for estimating values: dynamic programming, TD,
and Monte Carlo. Along the left edge of the space are the sample-update methods,
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Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the A-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and off-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the
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value function for the policy for a different policy, often the one that the agent currently
thinks is best. The policy generating behavior is typically different from what is currently
thought best because of the need to explore. This third dimension might be visualized as
perpendicular to the plane of the page in Figure 8.11.

In addition to the three dimensions just discussed, we have identified a number of
others throughout the book:

Definition of return Is the task episodic or continuing, discounted or undiscounted?

Action values vs. state values vs. afterstate values What kind of values should
be estimated? If only state values are estimated, then either a model or a separate
policy (as in actor—critic methods) is required for action selection.

Action selection/exploration How are actions selected to ensure a suitable trade-off
between exploration and exploitation? We have considered only the simplest ways to
do this: e-greedy, optimistic initialization of values, soft-max, and upper confidence
bound.

Synchronous vs. asynchronous Are the updates for all states performed simultane-
ously or one by one in some order?

Real vs. simulated Should one update based on real experience or simulated experi-
ence? If both, how much of each?

Location of updates What states or state—action pairs should be updated? Model-
free methods can choose only among the states and state—action pairs actually
encountered, but model-based methods can choose arbitrarily. There are many
possibilities here.

Timing of updates Should updates be done as part of selecting actions, or only after-
ward?

Memory for updates How long should updated values be retained? Should they be
retained permanently, or only while computing an action selection, as in heuristic
search?

Of course, these dimensions are neither exhaustive nor mutually exclusive. Individual
algorithms differ in many other ways as well, and many algorithms lie in several places
along several dimensions. For example, Dyna methods use both real and simulated
experience to affect the same value function. It is also perfectly sensible to maintain
multiple value functions computed in different ways or over different state and action
representations. These dimensions do, however, constitute a coherent set of ideas for
describing and exploring a wide space of possible methods.

The most important dimension not mentioned here, and not covered in Part I of
this book, is that of function approximation. Function approximation can be viewed as
an orthogonal spectrum of possibilities ranging from tabular methods at one extreme
through state aggregation, a variety of linear methods, and then a diverse set of nonlinear
methods. This dimension is explored in Part II.
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Chapter 8: Planning and Learning with Tabular Methods

Bibliographical and Historical Remarks

8.1

8.2

8.3

8.4

8.5

8.6-7

The overall view of planning and learning presented here has developed gradually
over a number of years, in part by the authors (Sutton, 1990, 1991a, 1991b;
Barto, Bradtke, and Singh, 1991, 1995; Sutton and Pinette, 1985; Sutton and
Barto, 1981b); it has been strongly influenced by Agre and Chapman (1990; Agre
1988), Bertsekas and Tsitsiklis (1989), Singh (1993), and others. The authors
were also strongly influenced by psychological studies of latent learning (Tolman,
1932) and by psychological views of the nature of thought (e.g., Galanter and
Gerstenhaber, 1956; Craik, 1943; Campbell, 1960; Dennett, 1978). In Part
IIT of the book, Section 14.6 relates model-based and model-free methods to
psychological theories of learning and behavior, and Section 15.11 discusses ideas
about how the brain might implement these types of methods.

The terms direct and indirect, which we use to describe different kinds of
reinforcement learning, are from the adaptive control literature (e.g., Goodwin
and Sin, 1984), where they are used to make the same kind of distinction. The
term system identification is used in adaptive control for what we call model-
learning (e.g., Goodwin and Sin, 1984; Ljung and Soderstrom, 1983; Young,
1984). The Dyna architecture is due to Sutton (1990), and the results in this
and the next section are based on results reported there. Barto and Singh
(1990) consider some of the issues in comparing direct and indirect reinforcement
learning methods. Early work extending Dyna to linear function approximation
(Chapter 9) was done by Sutton, Szepesvéri, Geramifard, and Bowling (2008)
and by Parr, Li, Taylor, Painter-Wakefield, and Littman (2008).

There have been several works with model-based reinforcement learning that take
the idea of exploration bonuses and optimistic initialization to its logical extreme,
in which all incompletely explored choices are assumed maximally rewarding
and optimal paths are computed to test them. The E? algorithm of Kearns and
Singh (2002) and the R-max algorithm of Brafman and Tennenholtz (2003) are
guaranteed to find a near-optimal solution in time polynomial in the number
of states and actions. This is usually too slow for practical algorithms but is
probably the best that can be done in the worst case.

Prioritized sweeping was developed simultaneously and independently by Moore
and Atkeson (1993) and Peng and Williams (1993). The results in the box on
page 170 are due to Peng and Williams (1993). The results in the box on page 171
are due to Moore and Atkeson. Key subsequent work in this area includes that
by McMahan and Gordon (2005) and by van Seijen and Sutton (2013).

This section was strongly influenced by the experiments of Singh (1993).

Trajectory sampling has implicitly been a part of reinforcement learning from
the outset, but it was most explicitly emphasized by Barto, Bradtke, and Singh
(1995) in their introduction of RTDP. They recognized that Korf’s (1990) learning
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8.9

8.10

8.11

real-time A* (LRTA*) algorithm is an asynchronous DP algorithm that applies
to stochastic problems as well as the deterministic problems on which Korf
focused. Beyond LRTA*, RTDP includes the option of updating the values of
many states in the time intervals between the execution of actions. Barto et
al. (1995) proved the convergence result described here by combining Korf’s (1990)
convergence proof for LRTA* with the result of Bertsekas (1982) (also Bertsekas
and Tsitsiklis, 1989) ensuring convergence of asynchronous DP for stochastic
shortest path problems in the undiscounted case. Combining model-learning
with RTDP is called Adaptive RTDP, also presented by Barto et al. (1995) and
discussed by Barto (2011).

For further reading on heuristic search, the reader is encouraged to consult texts
and surveys such as those by Russell and Norvig (2009) and Korf (1988). Peng
and Williams (1993) explored a forward focusing of updates much as is suggested
in this section.

Abramson’s (1990) expected-outcome model is a rollout algorithm applied to two-
person games in which the play of both simulated players is random. He argued
that even with random play, it is a “powerful heuristic” that is “precise, accurate,
easily estimable, efficiently calculable, and domain-independent.” Tesauro and
Galperin (1997) demonstrated the effectiveness of rollout algorithms for improving
the play of backgammon programs, adopting the term “rollout” from its use
in evaluating backgammon positions by playing out positions with different
randomly generating sequences of dice rolls. Bertsekas, Tsitsiklis, and Wu (1997)
examine rollout algorithms applied to combinatorial optimization problems, and
Bertsekas (2013) surveys their use in discrete deterministic optimization problems,
remarking that they are “often surprisingly effective.”

The central ideas of MCTS were introduced by Coulom (2006) and by Kocsis
and Szepesvari (2006). They built upon previous research with Monte Carlo
planning algorithms as reviewed by these authors. Browne, Powley, Whitehouse,
Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, and Colton (2012)
is an excellent survey of MCTS methods and their applications. David Silver
contributed to the ideas and presentation in this section.






Part II:
Approximate Solution Methods

In the second part of the book we extend the tabular methods presented in the first part
to apply to problems with arbitrarily large state spaces. In many of the tasks to which we
would like to apply reinforcement learning the state space is combinatorial and enormous;
the number of possible camera images, for example, is much larger than the number of
atoms in the universe. In such cases we cannot expect to find an optimal policy or the
optimal value function even in the limit of infinite time and data; our goal instead is to
find a good approximate solution using limited computational resources. In this part of
the book we explore such approximate solution methods.

The problem with large state spaces is not just the memory needed for large tables,
but the time and data needed to fill them accurately. In many of our target tasks, almost
every state encountered will never have been seen before. To make sensible decisions in
such states it is necessary to generalize from previous encounters with different states
that are in some sense similar to the current one. In other words, the key issue is that of
generalization. How can experience with a limited subset of the state space be usefully
generalized to produce a good approximation over a much larger subset?

Fortunately, generalization from examples has already been extensively studied, and
we do not need to invent totally new methods for use in reinforcement learning. To some
extent we need only combine reinforcement learning methods with existing generalization
methods. The kind of generalization we require is often called function approximation
because it takes examples from a desired function (e.g., a value function) and attempts
to generalize from them to construct an approximation of the entire function. Function
approximation is an instance of supervised learning, the primary topic studied in machine
learning, artificial neural networks, pattern recognition, and statistical curve fitting. In
theory, any of the methods studied in these fields can be used in the role of function
approximator within reinforcement learning algorithms, although in practice some fit
more easily into this role than others.

Reinforcement learning with function approximation involves a number of new issues
that do not normally arise in conventional supervised learning, such as nonstationarity,
bootstrapping, and delayed targets. We introduce these and other issues successively over
the five chapters of this part. Initially we restrict attention to on-policy training, treating
in Chapter 9 the prediction case, in which the policy is given and only its value function
is approximated, and then in Chapter 10 the control case, in which an approximation to
the optimal policy is found. The challenging problem of off-policy learning with function
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approximation is treated in Chapter 11. In each of these three chapters we will have
to return to first principles and re-examine the objectives of the learning to take into
account function approximation. Chapter 12 introduces and analyzes the algorithmic
mechanism of eligibility traces, which dramatically improves the computational properties
of multi-step reinforcement learning methods in many cases. The final chapter of this
part explores a different approach to control, policy-gradient methods, which approximate
the optimal policy directly and need never form an approximate value function (although
they may be much more efficient if they do approximate a value function as well the

policy).



Chapter 9

On-policy Prediction with
Approximation

In this chapter, we begin our study of function approximation in reinforcement learning
by considering its use in estimating the state-value function from on-policy data, that is,
in approximating v, from experience generated using a known policy 7. The novelty in
this chapter is that the approximate value function is represented not as a table but as a
parameterized functional form with weight vector w € R%. We will write 9(s,w) ~ v, (s)
for the approximate value of state s given weight vector w. For example, © might be
a linear function in features of the state, with w the vector of feature weights. More
generally, o might be the function computed by a multi-layer artificial neural network,
with w the vector of connection weights in all the layers. By adjusting the weights, any
of a wide range of different functions can be implemented by the network. Or ¢ might be
the function computed by a decision tree, where w is all the numbers defining the split
points and leaf values of the tree. Typically, the number of weights (the dimensionality of
w) is much less than the number of states (d < |§|), and changing one weight changes the
estimated value of many states. Consequently, when a single state is updated, the change
generalizes from that state to affect the values of many other states. Such generalization
makes the learning potentially more powerful but also potentially more difficult to manage
and understand.

Perhaps surprisingly, extending reinforcement learning to function approximation also
makes it applicable to partially observable problems, in which the full state is not available
to the agent. If the parameterized function form for v does not allow the estimated
value to depend on certain aspects of the state, then it is just as if those aspects are
unobservable. In fact, all the theoretical results for methods using function approximation
presented in this part of the book apply equally well to cases of partial observability.
What function approximation can’t do, however, is augment the state representation
with memories of past observations. Some such possible further extensions are discussed
briefly in Section 17.3.
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9.1 Value-function Approximation

All of the prediction methods covered in this book have been described as updates to an
estimated value function that shift its value at particular states toward a “backed-up value,”
or update target, for that state. Let us refer to an individual update by the notation s — u,
where s is the state updated and u is the update target that s’s estimated value is shifted
toward. For example, the Monte Carlo update for value prediction is Sy — Gy, the TD(0)
update is Sy — Rip1 +70(S¢+1,wy), and the n-step TD update is Sy — Gy.p4p. In the DP
(dynamic programming) policy-evaluation update, s — E [Riy1 + Y0(St41,We) | St =s],
an arbitrary state s is updated, whereas in the other cases the state encountered in actual
experience, Sy, is updated.

It is natural to interpret each update as specifying an example of the desired input—
output behavior of the value function. In a sense, the update s — u means that the
estimated value for state s should be more like the update target u. Up to now, the
actual update has been trivial: the table entry for s’s estimated value has simply been
shifted a fraction of the way toward w, and the estimated values of all other states
were left unchanged. Now we permit arbitrarily complex and sophisticated methods to
implement the update, and updating at s generalizes so that the estimated values of
many other states are changed as well. Machine learning methods that learn to mimic
input—output examples in this way are called supervised learning methods, and when the
outputs are numbers, like u, the process is often called function approximation. Function
approximation methods expect to receive examples of the desired input—output behavior
of the function they are trying to approximate. We use these methods for value prediction
simply by passing to them the s — g of each update as a training example. We then
interpret the approximate function they produce as an estimated value function.

Viewing each update as a conventional training example in this way enables us to use
any of a wide range of existing function approximation methods for value prediction. In
principle, we can use any method for supervised learning from examples, including artificial
neural networks, decision trees, and various kinds of multivariate regression. However,
not all function approximation methods are equally well suited for use in reinforcement
learning. The most sophisticated artificial neural network and statistical methods all
assume a static training set over which multiple passes are made. In reinforcement
learning, however, it is important that learning be able to occur online, while the agent
interacts with its environment or with a model of its environment. To do this requires
methods that are able to learn efficiently from incrementally acquired data. In addition,
reinforcement learning generally requires function approximation methods able to handle
nonstationary target functions (target functions that change over time). For example,
in control methods based on GPI (generalized policy iteration) we often seek to learn
¢» while m changes. Even if the policy remains the same, the target values of training
examples are nonstationary if they are generated by bootstrapping methods (DP and TD
learning). Methods that cannot easily handle such nonstationarity are less suitable for
reinforcement learning.
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9.2 The Prediction Objective (VE)

Up to now we have not specified an explicit objective for prediction. In the tabular case
a continuous measure of prediction quality was not necessary because the learned value
function could come to equal the true value function exactly. Moreover, the learned
values at each state were decoupled—an update at one state affected no other. But with
genuine approximation, an update at one state affects many others, and it is not possible
to get the values of all states exactly correct. By assumption we have far more states
than weights, so making one state’s estimate more accurate invariably means making
others’ less accurate. We are obligated then to say which states we care most about. We
must specify a state distribution p(s) >0, >, pu(s) = 1, representing how much we care
about the error in each state s. By the error in a state s we mean the square of the
difference between the approximate value 9(s,w) and the true value v, (s). Weighting
this over the state space by p, we obtain a natural objective function, the Mean Squared
Value Error, denoted VE:

VE(w) =Y us) [vﬂ(s) - ﬁ(s,w)] ’ (9.1)

sES

The square root of this measure, the root VE, gives a rough measure of how much the
approximate values differ from the true values and is often used in plots. Often u(s) is
chosen to be the fraction of time spent in s. Under on-policy training this is called the
on-policy distribution; we focus entirely on this case in this chapter. In continuing tasks,
the on-policy distribution is the stationary distribution under 7.

The on-policy distribution in episodic tasks

In an episodic task, the on-policy distribution is a little different in that it depends
on how the initial states of episodes are chosen. Let h(s) denote the probability
that an episode begins in each state s, and let 7(s) denote the number of time
steps spent, on average, in state s in a single episode. Time is spent in a state s
if episodes start in s, or if transitions are made into s from a preceding state s in
which time is spent:

n(s) = h(s) + Zn(g) Zw(a|§)p(s|§, a), forall s€S8. (9.2)

This system of equations can be solved for the expected number of visits n(s). The
on-policy distribution is then the fraction of time spent in each state normalized to
sum to one:

n(s)
p(s) = ,
ZS’ 77(5/)
This is the natural choice without discounting. If there is discounting (y < 1) it

should be treated as a form of termination, which can be done simply by including
a factor of +y in the second term of (9.2).

for all s € 8. (9.3)
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The two cases, continuing and episodic, behave similarly, but with approximation they
must be treated separately in formal analyses, as we will see repeatedly in this part of
the book. This completes the specification of the learning objective.

But it is not completely clear that the VE is the right performance objective for
reinforcement learning. Remember that our ultimate purpose—the reason we are learning
a value function—is to find a better policy. The best value function for this purpose is
not necessarily the best for minimizing VE. Nevertheless, it is not yet clear what a more
useful alternative goal for value prediction might be. For now, we will focus on VE.

An ideal goal in terms of VE would be to find a global optimum, a weight vector w*
for which VE(w*) < VE(w) for all possible w. Reaching this goal is sometimes possible
for simple function approximators such as linear ones, but is rarely possible for complex
function approximators such as artificial neural networks and decision trees. Short of
this, complex function approximators may seek to converge instead to a local optimum,
a weight vector w* for which VE(w*) < VE(w) for all w in some neighborhood of w*.
Although this guarantee is only slightly reassuring, it is typically the best that can be
said for nonlinear function approximators, and often it is enough. Still, for many cases of
interest in reinforcement learning there is no guarantee of convergence to an optimum, or
even to within a bounded distance of an optimum. Some methods may in fact diverge,
with their VE approaching infinity in the limit.

In the last two sections we outlined a framework for combining a wide range of
reinforcement learning methods for value prediction with a wide range of function
approximation methods, using the updates of the former to generate training examples
for the latter. We also described a VE performance measure which these methods may
aspire to minimize. The range of possible function approximation methods is far too
large to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities. In
the rest of this chapter we focus on function approximation methods based on gradient
principles, and on linear gradient-descent methods in particular. We focus on these
methods in part because we consider them to be particularly promising and because they
reveal key theoretical issues, but also because they are simple and our space is limited.

9.3 Stochastic-gradient and Semi-gradient Methods

We now develop in detail one class of learning methods for function approximation in
value prediction, those based on stochastic gradient descent (SGD). SGD methods are
among the most widely used of all function approximation methods and are particularly
well suited to online reinforcement learning.

In gradient-descent methods, the weight vector is a column vector with a fixed number
of real valued components, w = (w1, ws, ...,wq) ' ,* and the approximate value function
0(s,w) is a differentiable function of w for all s € 8. We will be updating w at each of
a series of discrete time steps, t = 0,1,2,3,..., so we will need a notation w; for the

IThe T denotes transpose, needed here to turn the horizontal row vector in the text into a vertical
column vector; in this book vectors are generally taken to be column vectors unless explicitly written out
horizontally or transposed.
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weight vector at each step. For now, let us assume that, on each step, we observe a new
example Sy — v, (S;) consisting of a (possibly randomly selected) state Sy and its true
value under the policy. These states might be successive states from an interaction with
the environment, but for now we do not assume so. Even though we are given the exact,
correct values, v, (S;) for each Sy, there is still a difficult problem because our function
approximator has limited resources and thus limited resolution. In particular, there is
generally no w that gets all the states, or even all the examples, exactly correct. In
addition, we must generalize to all the other states that have not appeared in examples.

We assume that states appear in examples with the same distribution, u, over which
we are trying to minimize the VE as given by (9.1). A good strategy in this case is
to try to minimize error on the observed examples. Stochastic gradient-descent (SGD)
methods do this by adjusting the weight vector after each example by a small amount in
the direction that would most reduce the error on that example:

Wil = Wy — %av [vﬂ(St) - @(St,wt)r (9.4)
—w;+a [v,r(sg - @(st,wt)} Vo(S;,wr), (9.5)

where « is a positive step-size parameter, and V f(w), for any scalar expression f(w)
that is a function of a vector (here w), denotes the column vector of partial derivatives
of the expression with respect to the components of the vector:

o (w) 0f(w) 8f(W))T_

awl ’ a’wg T 6wd

Vi) = ( (0.
This derivative vector is the gradient of f with respect to w. SGD methods are “gradient
descent” methods because the overall step in w; is proportional to the negative gradient
of the example’s squared error (9.4). This is the direction in which the error falls most
rapidly. Gradient descent methods are called “stochastic” when the update is done, as
here, on only a single example, which might have been selected stochastically. Over many
examples, making small steps, the overall effect is to minimize an average performance
measure such as the VE.

It may not be immediately apparent why SGD takes only a small step in the direction
of the gradient. Could we not move all the way in this direction and completely eliminate
the error on the example? In many cases this could be done, but usually it is not desirable.
Remember that we do not seek or expect to find a value function that has zero error for
all states, but only an approximation that balances the errors in different states. If we
completely corrected each example in one step, then we would not find such a balance.
In fact, the convergence results for SGD methods assume that o decreases over time. If
it decreases in such a way as to satisfy the standard stochastic approximation conditions
(2.7), then the SGD method (9.5) is guaranteed to converge to a local optimum.

We turn now to the case in which the target output, here denoted U; € R, of the tth
training example, S; — Uy, is not the true value, v, (S;), but some, possibly random,
approximation to it. For example, U; might be a noise-corrupted version of v, (S;), or it
might be one of the bootstrapping targets using 0 mentioned in the previous section. In



202 Chapter 9: On-policy Prediction with Approximation

these cases we cannot perform the exact update (9.5) because v, (S;) is unknown, but
we can approximate it by substituting U; in place of v,(S;). This yields the following
general SGD method for state-value prediction:

Wiyl = Wi + [Ut - @(Stawt):| Vo (S, we). (9.7)

If U; is an unbiased estimate, that is, if E[U|S;=s] = v,(S:), for each ¢, then wy is
guaranteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing a.

For example, suppose the states in the examples are the states generated by interaction
(or simulated interaction) with the environment using policy 7. Because the true value of
a state is the expected value of the return following it, the Monte Carlo target U; = G is
by definition an unbiased estimate of v, (S;). With this choice, the general SGD method
(9.7) converges to a locally optimal approximation to v, (S;). Thus, the gradient-descent
version of Monte Carlo state-value prediction is guaranteed to find a locally optimal
solution. Pseudocode for a complete algorithm is shown in the box below.

Gradient Monte Carlo Algorithm for Estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : § x R — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,S51, A1, ..., Rp, St using 7
Loop for each step of episode, t =0,1,...,7 — 1:
W W+ a[Gy — 9(S;,w)| V(S w)

One does not obtain the same guarantees if a bootstrapping estimate of v, (S;) is used
as the target Uy in (9.7). Bootstrapping targets such as n-step returns Gy.typ, or the DP
target >, ., m(alSt)p(s’, 7| St a)[r +v0(s",wy)] all depend on the current value of the
weight vector w;, which implies that they will be biased and that they will not produce a
true gradient-descent method. One way to look at this is that the key step from (9.4)
to (9.5) relies on the target being independent of w;. This step would not be valid if
a bootstrapping estimate were used in place of v, (S;). Bootstrapping methods are not
in fact instances of true gradient descent (Barnard, 1993). They take into account the
effect of changing the weight vector w, on the estimate, but ignore its effect on the target.
They include only a part of the gradient and, accordingly, we call them semi-gradient
methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear case
discussed in the next section. Moreover, they offer important advantages that make them
often clearly preferred. One reason for this is that they typically enable significantly faster
learning, as we have seen in Chapters 6 and 7. Another is that they enable learning to
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be continual and online, without waiting for the end of an episode. This enables them to
be used on continuing problems and provides computational advantages. A prototypical
semi-gradient method is semi-gradient TD(0), which uses Uy = R¢11 + y0(St+1,W) as its
target. Complete pseudocode for this method is given in the box below.

Semi-gradient TD(0) for estimating ¥ = v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : §$ x R? — R such that 9(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|S)
Take action A, observe R, S’
W W+ a[R+ (5", w) — 0(S,w)| Vo (S,w)
S« 5

until S is terminal

\. .

State aggregation is a simple form of generalizing function approximation in which
states are grouped together, with one estimated value (one component of the weight
vector w) for each group. The value of a state is estimated as its group’s component,
and when the state is updated, that component alone is updated. State aggregation
is a special case of SGD (9.7) in which the gradient, Vi(S;,wy), is 1 for S;’s group’s
component and 0 for the other components.

Example 9.1: State Aggregation on the 1000-state Random Walk Consider a
1000-state version of the random walk task (Examples 6.2 and 7.1 on pages 125 and
144). The states are numbered from 1 to 1000, left to right, and all episodes begin near
the center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all with
equal probability. Of course, if the current state is near an edge, then there may be fewer
than 100 neighbors on that side of it. In this case, all the probability that would have
gone into those missing neighbors goes into the probability of terminating on that side
(thus, state 1 has a 0.5 chance of terminating on the left, and state 950 has a 0.25 chance
of terminating on the right). As usual, termination on the left produces a reward of
—1, and termination on the right produces a reward of +1. All other transitions have a
reward of zero. We use this task as a running example throughout this section.

Figure 9.1 shows the true value function v, for this task. It is nearly a straight line,
but curving slightly toward the horizontal for the last 100 states at each end. Also shown
is the final approximate value function learned by the gradient Monte-Carlo algorithm
with state aggregation after 100,000 episodes with a step size of @ =2 x 10~°. For the
state aggregation, the 1000 states were partitioned into 10 groups of 100 states each (i.e.,
states 1-100 were one group, states 101-200 were another, and so on). The staircase effect
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1 True 10,0137
value U r/—
Value . A’\fgroxlimaﬁe | Distribution
scale VA U — < scale
P ' M o017
-1 0
1 State 1000

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

shown in the figure is typical of state aggregation; within each group, the approximate
value is constant, and it changes abruptly from one group to the next. These approximate
values are close to the global minimum of the VE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution p for this task, shown in the lower portion of the figure with a
right-side scale. State 500, in the center, is the first state of every episode, but is rarely
visited again. On average, about 1.37% of the time steps are spent in the start state.
The states reachable in one step from the start state are the second most visited, with
about 0.17% of the time steps being spent in each of them. From there u falls off almost
linearly, reaching about 0.0147% at the extreme states 1 and 1000. The most visible
effect of the distribution is on the leftmost groups, whose values are clearly shifted higher
than the unweighted average of the true values of states within the group, and on the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by p. For example, in the
leftmost group, state 100 is weighted more than 3 times more strongly than state 1. Thus
the estimate for the group is biased toward the true value of state 100, which is higher
than the true value of state 1. ]

9.4 Linear Methods

One of the most important special cases of function approximation is that in which the
approximate function, o(-,w), is a linear function of the weight vector, w. Corresponding
to every state s, there is a real-valued vector x(s) = (z1(s),z2(s),...,74(s)) ", with the
same number of components as w. Linear methods approximate state-value function by
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the inner product between w and x(s):

d
O(s,w) =w'x(s) = Zw,xl(s) (9.8)

In this case the approximate value function is said to be linear in the weights, or simply
linear.

The vector x(s) is called a feature vector representing state s. Each component z;(s)
of x(s) is the value of a function z; : § — R. We think of a feature as the entirety of one
of these functions, and we call its value for a state s a feature of s. For linear methods,
features are basis functions because they form a linear basis for the set of approximate
functions. Constructing d-dimensional feature vectors to represent states is the same as
selecting a set of d basis functions. Features may be defined in many different ways; we
cover a few possibilities in the next sections.

It is natural to use SGD updates with linear function approximation. The gradient of
the approximate value function with respect to w in this case is

Vi(s,w) = x(s).

Thus, in the linear case the general SGD update (9.7) reduces to a particularly simple
form:

Wt+1 = Wi + (0% |:Ut — f)(St,Wt)] X(St)

Because it is so simple, the linear SGD case is one of the most favorable for mathematical
analysis. Almost all useful convergence results for learning systems of all kinds are for
linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge to
or near a local optimum is automatically guaranteed to converge to or near the global
optimum. For example, the gradient Monte Carlo algorithm presented in the previous
section converges to the global optimum of the VE under linear function approximation
if a is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also converges
under linear function approximation, but this does not follow from general results on
SGD; a separate theorem is necessary. The weight vector converged to is also not the
global optimum, but rather a point near the local optimum. It is useful to consider this
important case in more detail, specifically for the continuing case. The update at each
time ¢ is

Wi = Wy + a(RtH + 'YW;FXtJrl — thxt)xt (9.9)
T
=Ww;+ a(Rt+1Xt — Xy (Xt - ’YXt+1) Wt),

where here we have used the notational shorthand x, = x(S;). Once the system has
reached steady state, for any given w;, the expected next weight vector can be written

]E[Wt+1|Wt] = W¢ + O[(b — AWt)7 (910)
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where
b=E[Rx] €R? and A= E{xt (x; — 'yxtH)T} e R¢ x R (9.11)

From (9.10) it is clear that, if the system converges, it must converge to the weight vector
wrp at which

b— AWTD =0
= b=Awrp
= wrp = A 'b. (9.12)

This quantity is called the TD fized point. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the inverse
above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

]E[wt+1\wt] = (I — aA)Wt + ab. (913)

Note that the matrix A multiplies the weight vector w; and not b; only A is
important to convergence. To develop intuition, consider the special case in which
A is a diagonal matrix. If any of the diagonal elements are negative, then the
corresponding diagonal element of I — A will be greater than one, and the
corresponding component of w; will be amplified, which will lead to divergence if
continued. On the other hand, if the diagonal elements of A are all positive, then
« can be chosen smaller than one over the largest of them, such that I — A is
diagonal with all diagonal elements between 0 and 1. In this case the first term
of the update tends to shrink wy, and stability is assured. In general, w; will be
reduced toward zero whenever A is positive definite, meaning y' Ay > 0 for any
real vector y # 0. Positive definiteness also ensures that the inverse A~! exists.

For linear TD(0), in the continuing case with v < 1, the A matrix (9.11) can be
written

A=Y u(s)Y wlals) > plr,s'|s, a)x(s) (x(s) — vx(s') |

a r,s’

= 5" 1(s) D p(s'[8)x(s) (x(s) — yx(s")) |

]
= 3 utspx) (xts) 2 S p(s 1905
= X"D(I - vP)X,

where p(s) is the stationary distribution under 7, p(s’|s) is the probability of
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transition from s to s’ under policy m, P is the |8| x |§| matrix of these probabilities,
D is the |§| x |8| diagonal matrix with the u(s) on its diagonal, and X is the 8| x d
matrix with x(s) as its rows. From here it is clear that the inner matrix D(I — yP)
is key to determining the positive definiteness of A.

For a key matrix of this form, positive definiteness is assured if all of its columns
sum to a nonnegative number. This was shown by Sutton (1988, p. 27) based
on two previously established theorems. One theorem says that any matrix M
is positive definite if and only if the symmetric matrix S = M + M is positive
definite (Sutton 1988, appendix). The second theorem says that any symmetric
real matrix S is positive definite if all of its diagonal entries are positive and greater
than the sum of the absolute values of the corresponding off-diagonal entries (Varga
1962, p. 23). For our key matrix, D(I — vP), the diagonal entries are positive
and the off-diagonal entries are negative, so all we have to show is that each row
sum plus the corresponding column sum is positive. The row sums are all positive
because P is a stochastic matrix and v < 1. Thus it only remains to show that
the column sums are nonnegative. Note that the row vector of the column sums
of any matrix M can be written as 1M, where 1 is the column vector with all
components equal to 1. Let g denote the |8|-vector of the u(s), where u =P T p by
virtue of y being the stationary distribution. The column sums of our key matrix,
then, are:

1'DI—P) =p'(I-9P)

—p' —yu'P
=pu' =y’ (because p is the stationary distribution)
=1-7u',

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions and a
schedule for reducing « over time are needed to prove convergence with probability
one.)

At the TD fixed point, it has also been proven (in the continuing case) that the VE is
within a bounded expansion of the lowest possible error:

VE(wtp) < L min VE(w). (9.14)
1l—vy w

That is, the asymptotic error of the TD method is no more than ﬁ times the smallest
possible error, that attained in the limit by the Monte Carlo method. Because 7 is often
near one, this expansion factor can be quite large, so there is substantial potential loss in
asymptotic performance with the TD method. On the other hand, recall that the TD
methods are often of vastly reduced variance compared to Monte Carlo methods, and
thus faster, as we saw in Chapters 6 and 7. Which method will be best depends on the
nature of the approximation and problem, and on how long learning continues.
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A bound analogous to (9.14) applies to other on-policy bootstrapping methods as well.
For example, linear semi-gradient DP (Eq. 9.7 with Uy = >~ w(a|S;) >, . p(s', 7] S, a)[r+
vd(s',wy)]) with updates according to the on-policy distribution will also converge to
the TD fixed point. One-step semi-gradient action-value methods, such as semi-gradient
Sarsa(0) covered in the next chapter converge to an analogous fixed point and an analogous
bound. For episodic tasks, there is a slightly different but related bound (see Bertsekas
and Tsitsiklis, 1996). There are also a few technical conditions on the rewards, features,
and decrease in the step-size parameter, which we have omitted here. The full details
can be found in the original paper (Tsitsiklis and Van Roy, 1997).

Critical to the these convergence results is that states are updated according to the
on-policy distribution. For other update distributions, bootstrapping methods using
function approximation may actually diverge to infinity. Examples of this and a discussion
of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggregation
is a special case of linear function approximation, so let’s return to the 1000-state random
walk to illustrate some of the observations made in this chapter. The left panel of
Figure 9.2 shows the final value function learned by the semi-gradient TD(0) algorithm
(page 203) using the same state aggregation as in Example 9.1. We see that the near-
asymptotic TD approximation is indeed farther from the true values than the Monte
Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize Monte Carlo methods, as we investigated fully with n-step TD methods in
Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-gradient
TD method using state aggregation on the 1000-state random walk that are strikingly
similar to those we obtained earlier with tabular methods and the 19-state random
walk (Figure 7.2). To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups were then quantitatively close
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X” — Average 045
Approximate d RMS error
ol TDvalue v _ over 1090 states 04
5 — and first 10
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! State 1000 0 02 04 0.6 08 1

Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task. Left:
Asymptotic values of semi-gradient TD are worse than the asymptotic Monte Carlo values in
Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly similar
to those with tabular representations (cf. Figure 7.2). These data are averages over 100 runs.
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to the 19 states of the tabular problem. In particular, recall that state transitions were
up to 100 states to the left or right. A typical transition would then be of 50 states to
the right or left, which is quantitatively analogous to the single-state state transitions of
the 19-state tabular system. To complete the match, we use here the same performance
measure—an unweighted average of the RMS error over all states and over the first
10 episodes—rather than a VE objective as is otherwise more appropriate when using
function approximation. |

The semi-gradient n-step TD algorithm used in the example above is the natural
extension of the tabular n-step TD algorithm presented in Chapter 7 to semi-gradient
function approximation. Pseudocode is given in the box below.

n-step semi-gradient TD for estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : 8+ x R? — R such that ¢(terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T ¢ o0
Loop for t =0,1,2,... :
| Ift <T, then:

| Take an action according to m(-|S)

| Observe and store the next reward as R;;; and the next state as Sy11
| If S¢yq is terminal, then T+ ¢ + 1

| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)

| If7>0:
|

|

|

G — Zir:%:rnﬂ Ni=T-1R,
If 74+ n < T, then: G <+ G +"0(Sr4n,W) (Gririn)

W w+ a[G —0(S;,w)] Vo (Sr,w)
Until7 =T -1

The key equation of this algorithm, analogous to (7.2), is
Witn = Witn—1+a[Gripn — (S5, Wign—1)] VO(St,Wiin—1), 0<t<T, (9.15)
where the n-step return is generalized from (7.1) to

Griin = Rip1 +7Ripo+ - +7" 'R +7"0(St4n,Witn—1), 0<t<T—n. (9.16)

FEzxercise 9.1 Show that tabular methods such as presented in Part I of this book are a
special case of linear function approximation. What would the feature vectors be? [
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9.5 Feature Construction for Linear Methods

Linear methods are interesting because of their convergence guarantees, but also because
in practice they can be very efficient in terms of both data and computation. Whether or
not this is so depends critically on how the states are represented in terms of features,
which we investigate in this large section. Choosing features appropriate to the task is
an important way of adding prior domain knowledge to reinforcement learning systems.
Intuitively, the features should correspond to the aspects of the state space along which
generalization may be appropriate. If we are valuing geometric objects, for example,
we might want to have features for each possible shape, color, size, or function. If we
are valuing states of a mobile robot, then we might want to have features for locations,
degrees of remaining battery power, recent sonar readings, and so on.

A limitation of the linear form is that it cannot take into account any interactions
between features, such as the presence of feature i being good only in the absence of
feature j. For example, in the pole-balancing task (Example 3.4) high angular velocity
can be either good or bad depending on the angle. If the angle is high, then high angular
velocity means an imminent danger of falling—a bad state—whereas if the angle is low,
then high angular velocity means the pole is righting itself—a good state. A linear value
function could not represent this if its features coded separately for the angle and the
angular velocity. It needs instead, or in addition, features for combinations of these two
underlying state dimensions. In the following subsections we consider a variety of general
ways of doing this.

9.5.1 Polynomials

The states of many problems are initially expressed as numbers, such as positions and
velocities in the pole-balancing task (Example 3.4), the number of cars in each lot in the
Jack’s car rental problem (Example 4.2), or the gambler’s capital in the gambler problem
(Example 4.3). In these types of problems, function approximation for reinforcement
learning has much in common with the familiar tasks of interpolation and regression.
Various families of features commonly used for interpolation and regression can also be
used in reinforcement learning. Polynomials make up one of the simplest families of
features used for interpolation and regression. While the basic polynomial features we
discuss here do not work as well as other types of features in reinforcement learning, they
serve as a good introduction because they are simple and familiar.

As an example, suppose a reinforcement learning problem has states with two numerical
dimensions. For a single representative state s, let its two numbers be s; € R and s, € R.
You might choose to represent s simply by its two state dimensions, so that x(s) =
(s1,52) ", but then you would not be able to take into account any interactions between
these dimensions. In addition, if both s; and sy were zero, then the approximate value
would have to also be zero. Both limitations can be overcome by instead representing s by
the four-dimensional feature vector x(s) = (1, sy, 52, 5152) ' . The initial 1 feature allows
the representation of affine functions in the original state numbers, and the final product
feature, s1s9, enables interactions to be taken into account. Or you might choose to use
higher-dimensional feature vectors like x(s) = (1, 51, 82, 5152, 57, 83, 5153, 5259, 5553) | to
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take more complex interactions into account. Such feature vectors enable approximations
as arbitrary quadratic functions of the state numbers—even though the approximation is
still linear in the weights that have to be learned. Generalizing this example from two
to k numbers, we can represent highly-complex interactions among a problem’s state
dimensions:

Suppose each state s corresponds to k numbers, s, S, ..., Sk, with each s; € R.
For this k-dimensional state space, each order-n polynomial-basis feature x; can be
written as

xi(s) = ILE_ 85, (9.17)

where each ¢; ; is an integer in the set {0,1,...,n} for an integer n > 0. These
features make up the order-n polynomial basis for dimension k, which contains
(n + 1)* different features.

Higher-order polynomial bases allow for more accurate approximations of more compli-
cated functions. But because the number of features in an order-n polynomial basis grows
exponentially with the dimension k of the natural state space (if n>0), it is generally
necessary to select a subset of them for function approximation. This can be done using
prior beliefs about the nature of the function to be approximated, and some automated
selection methods developed for polynomial regression can be adapted to deal with the
incremental and nonstationary nature of reinforcement learning.

Ezercise 9.2 Why does (9.17) define (n + 1)* distinct features for dimension k? O
Exercise 9.3 What n and ¢; ; produce the feature vectors x(s) = (1, s1, s2, 5152, 57, 53,
5182, 5%59,5252) 17 O

9.5.2 Fourier Basis

Another linear function approximation method is based on the time-honored Fourier
series, which expresses periodic functions as weighted sums of sine and cosine basis
functions (features) of different frequencies. (A function f is periodic if f(x) = f(z + 7)
for all z and some period 7.) The Fourier series and the more general Fourier transform
are widely used in applied sciences in part because if a function to be approximated is
known, then the basis function weights are given by simple formulae and, further, with
enough basis functions essentially any function can be approximated as accurately as
desired. In reinforcement learning, where the functions to be approximated are unknown,
Fourier basis functions are of interest because they are easy to use and can perform well
in a range of reinforcement learning problems.

First consider the one-dimensional case. The usual Fourier series representation of a
function of one dimension having period 7 represents the function as a linear combination
of sine and cosine functions that are each periodic with periods that evenly divide 7 (in
other words, whose frequencies are integer multiples of a fundamental frequency 1/7).
But if you are interested in approximating an aperiodic function defined over a bounded
interval, then you can use these Fourier basis features with 7 set to the length the interval.



212 Chapter 9: On-policy Prediction with Approximation

The function of interest is then just one period of the periodic linear combination of the
sine and cosine features.

Furthermore, if you set 7 to twice the length of the interval of interest and restrict
attention to the approximation over the half interval [0, 7/2], then you can use just the
cosine features. This is possible because you can represent any even function, that is,
any function that is symmetric about the origin, with just the cosine basis. So any
function over the half-period [0,7/2] can be approximated as closely as desired with
enough cosine features. (Saying “any function” is not exactly correct because the function
has to be mathematically well-behaved, but we skip this technicality here.) Alternatively,
it is possible to use just sine features, linear combinations of which are always odd
functions, that is functions that are anti-symmetric about the origin. But it is generally
better to keep just the cosine features because “half-even” functions tend to be easier to
approximate than “half-odd” functions because the latter are often discontinuous at the
origin. Of course, this does not rule out using both sine and cosine features to approximate
over the interval [0, 7/2], which might be advantageous in some circumstances.

Following this logic and letting 7 = 2 so that the features are defined over the half-r
interval [0,1], the one-dimensional order-n Fourier cosine basis consists of the n + 1
features

x;(s) = cos(ims), s €[0,1],

for i = 0,...,n. Figure 9.3 shows one-dimensional Fourier cosine features z;, for i =
1,2,3,4; x( is a constant function.

1 1 1 1

Figure 9.3: One-dimensional Fourier cosine-basis features x;, i = 1, 2, 3, 4, for approximating
functions over the interval [0, 1]. After Konidaris et al. (2011).

This same reasoning applies to the Fourier cosine series approximation in the multi-
dimensional case as described in the box below.

Suppose each state s corresponds to a vector of k numbers, s = (s1, 82, ..., Sx) |
with each s; € [0,1]. The ith feature in the order-n Fourier cosine basis can then

be written

K

zi(s) = cos (rs' '), (9.18)

where ¢! = (ci,...,c};)T,Withcé» €{0,...,n}forj=1,....,kandi =0,...,(n+1).
This defines a feature for each of the (n + 1)* possible integer vectors c’. The inner
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product s'c? has the effect of assigning an integer in {0,...,n} to each dimension
of s. As in the one-dimensional case, this integer determines the feature’s frequency
along that dimension. The features can of course be shifted and scaled to suit the
bounded state space of a particular application.

As an example, consider the k = 2 case in which s = (s1,52) ", where each ¢’ = (¢}, c5) 7.
Figure 9.4 shows a selection of six Fourier cosine features, each labeled by the vector c’
that defines it (s; is the horizontal axis and c’ is shown as a row vector with the index i
omitted). Any zero in ¢ means the feature is constant along that state dimension. So if
c = (0,0)T, the feature is constant over both dimensions; if ¢ = (¢1,0) " the feature is
constant over the second dimension and varies over the first with frequency depending
on c¢;; and similarly, for ¢ = (0,c2)". When ¢ = (c1,¢2) " with neither ¢; = 0, the
feature varies along both dimensions and represents an interaction between the two state
variables. The values of ¢; and ¢y determine the frequency along each dimension, and
their ratio gives the direction of the interaction.

c=(0,1)" c=(1,0)7 c=(1,1)"

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the
vector ¢’ that defines it (s; is the horizontal axis, and ¢’ is shown with the index 4 omitted).
After Konidaris et al. (2011).

When using Fourier cosine features with a learning algorithm such as (9.7), semi-
gradient TD(0), or semi-gradient Sarsa, it may be helpful to use a different step-size
parameter for each feature. If « is the basic step-size parameter, then Konidaris, Osentoski,
and Thomas (2011) suggest setting the step-size parameter for feature z; to a; =
a/y/(c))?> + -+ (c},)? (except when each ¢} = 0, in which case a; = a).

Fourier cosine features with Sarsa can produce good performance compared to several
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other collections of basis functions, including polynomial and radial basis functions. Not
surprisingly, however, Fourier features have trouble with discontinuities because it is
difficult to avoid “ringing” around points of discontinuity unless very high frequency basis
functions are included.

The number of features in the order-n Fourier basis grows exponentially with the
dimension of the state space, but if that dimension is small enough (e.g., k < 5), then
one can select n so that all of the order-n Fourier features can be used. This makes the
selection of features more-or-less automatic. For high dimension state spaces, however, it
is necessary to select a subset of these features. This can be done using prior beliefs about
the nature of the function to be approximated, and some automated selection methods
can be adapted to deal with the incremental and nonstationary nature of reinforcement
learning. An advantage of Fourier basis features in this regard is that it is easy to select
features by setting the ¢’ vectors to account for suspected interactions among the state
variables and by limiting the values in the ¢’ vectors so that the approximation can
filter out high frequency components considered to be noise. On the other hand, because
Fourier features are non-zero over the entire state space (with the few zeros excepted),
they represent global properties of states, which can make it difficult to find good ways
to represent local properties.

Figure 9.5 shows learning curves comparing the Fourier and polynomial bases on the
1000-state random walk example. In general, we do not recommend using polynomials
for online learning.?

4
3F
VE 2 Polynomial basis
averaged Mg Ak s o
over 30 runs ' Pk g
Fourier basis
O, .
0 5000
Episodes

Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning
curves for the gradient Monte Carlo method with Fourier and polynomial bases of order 5, 10,
and 20. The step-size parameters were roughly optimized for each case: a = 0.0001 for the
polynomial basis and « = 0.00005 for the Fourier basis. The performance measure (y-axis) is
the root mean squared value error (9.1).

2There are families of polynomials more complicated than those we have discussed, for example,
different families of orthogonal polynomials, and these might work better, but at present there is little
experience with them in reinforcement learning.
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9.5.3 Coarse Coding

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1-0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the effect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
affected by learning. If we train at one state, a
point in the space, then the weights of all circles

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s’ depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

intersecting that state will be affected. Thus, by (9.8), the approximate value function
will be affected at all states within the union of the circles, with a greater effect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

Narrow generalization Broad generalization Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same

number and density of features.
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the shape of the features will determine the nature of the generalization. For example, if
they are not strictly circular, but are elongated in one direction, then generalization will
be similarly affected, as in Figure 9.7 (right).

Features with large receptive fields give broad generalization, but might also seem to
limit the learned function to a coarse approximation, unable to make discriminations
much finer than the width of the receptive fields. Happily, this is not the case. Initial
generalization from one point to another is indeed controlled by the size and shape of
the receptive fields, but acuity, the finest discrimination ultimately possible, is controlled
more by the total number of features.

Example 9.3: Coarseness of Coarse Coding This example illustrates the effect on
learning of the size of the receptive fields in coarse coding. Linear function approximation
based on coarse coding and (9.7) was used to learn a one-dimensional square-wave function
(shown at the top of Figure 9.8). The values of this function were used as the targets, U;.
With just one dimension, the receptive fields were intervals rather than circles. Learning
was repeated with three different sizes of the intervals: narrow, medium, and broad, as
shown at the bottom of the figure. All three cases had the same density of features,
about 50 over the extent of the function being learned. Training examples were generated
uniformly at random over this extent. The step-size parameter was o = 0n2 where n is
the number of features that were present at one time. Figure 9.8 shows the functions
learned in all three cases over the course of learning. Note that the width of the features
had a strong effect early in learning. With broad features, the generalization tended to be
broad; with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned was
affected only slightly by the width of the features. Receptive field shape tends to have a
strong effect on generalization but little effect on asymptotic solution quality.

desired

approx-
#Examples <— function — ™ ne
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40
160
640

2560

10240

Eanes
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feature
width

Narrow Medium Broad
features features features

Figure 9.8: Example of feature width’s strong effect on initial generalization (first row) and
weak effect on asymptotic accuracy (last row). |
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9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that is
flexible and computationally efficient. It may be the most practical feature representation
for modern sequential digital computers.

In tile coding the receptive fields of the features are grouped into partitions of the state
space. Each such partition is called a tiling, and each element of the partition is called a
tile. For example, the simplest tiling of a two-dimensional state space is a uniform grid
such as that shown on the left side of Figure 9.9. The tiles or receptive field here are
squares rather than the circles in Figure 9.6. If just this single tiling were used, then the
state indicated by the white spot would be represented by the single feature whose tile
it falls within; generalization would be complete to all states within the same tile and
nonexistent to states outside it. With just one tiling, we would not have coarse coding
but just a case of state aggregation.

. ——Tilingl —

Tiling 2 S AP I R O N
Tiling 3 " i i i i
Continuous Tiling 4 T f' f jEaaE «\ Four active
2D state }_ 50 i e _: T | -l tiles/features
™~ : L L o | overlap the point
pace o - =T T ; and are used to
Point in T T T T T represent it
state space ! ' : : !
to be (H I SO LN AR B
represented

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are offset from one another by a uniform amount in each dimension.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with tile coding,
multiple tilings are used, each offset by a fraction of a tile width. A simple case with
four tilings is shown on the right side of Figure 9.9. Every state, such as that indicated
by the white spot, falls in exactly one tile in each of the four tilings. These four tiles
correspond to four features that become active when the state occurs. Specifically, the
feature vector x(s) has one component for each tile in each tiling. In this example there
are 4 X 4 x 4 = 64 components, all of which will be 0 except for the four corresponding to
the tiles that s falls within. Figure 9.10 shows the advantage of multiple offset tilings
(coarse coding) over a single tiling on the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with partitions,
the overall number of features that are active at one time is the same for any state.
Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings. This allows the step-size parameter, «, to
be set in an easy, intuitive way. For example, choosing a = %, where n is the number
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Figure 9.10: Why we use coarse coding. Shown are learning curves on the 1000-state random
walk example for the gradient Monte Carlo algorithm with a single tiling and with multiple
tilings. The space of 1000 states was treated as a single continuous dimension, covered with tiles
each 200 states wide. The multiple tilings were offset from each other by 4 states. The step-size
parameter was set so that the initial learning rate in the two cases was the same, o = 0.0001 for
the single tiling and o = 0.0001/50 for the 50 tilings.

of tilings, results in exact one-trial learning. If the example s — v is trained on, then
whatever the prior estimate, ¥(s,w;), the new estimate will be 9(s,w;11) = v. Usually
one wishes to change more slowly than this, to allow for generalization and stochastic
variation in target outputs. For example, one might choose a = ﬁ, in which case the
estimate for the trained state would move one-tenth of the way to the target in one
update, and neighboring states will be moved less, proportional to the number of tiles
they have in common.

Tile coding also gains computational advantages from its use of binary feature vectors.
Because each component is either 0 or 1, the weighted sum making up the approximate
value function (9.8) is almost trivial to compute. Rather than performing d multiplications
and additions, one simply computes the indices of the n < d active features and then
adds up the n corresponding components of the weight vector.

Generalization occurs to states other than the one trained if those states fall within
any of the same tiles, proportional to the number of tiles in common. Even the choice of
how to offset the tilings from each other affects generalization. If they are offset uniformly
in each dimension, as they were in Figure 9.9, then different states can generalize in
qualitatively different ways, as shown in the upper half of Figure 9.11. Each of the eight
subfigures show the pattern of generalization from a trained state to nearby points. In this
example there are eight tilings, thus 64 subregions within a tile that generalize distinctly,
but all according to one of these eight patterns. Note how uniform offsets result in a
strong effect along the diagonal in many patterns. These artifacts can be avoided if the
tilings are offset asymmetrically, as shown in the lower half of the figure. These lower
generalization patterns are better because they are all well centered on the trained state
with no obvious asymmetries.
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Figure 9.11: Why tile asymmetrical offsets are preferred in tile coding. Shown is the strength
of generalization from a trained state, indicated by the small black plus, to nearby states, for the
case of eight tilings. If the tilings are uniformly offset (above), then there are diagonal artifacts
and substantial variations in the generalization, whereas with asymmetrically offset tilings the
generalization is more spherical and homogeneous.

Tilings in all cases are offset from each other by a fraction of a tile width in each
dimension. If w denotes the tile width and n the number of tilings, then ¥ is a fundamental
unit. Within small squares 7 on a side, all states activate the same tiles, have the same
feature representation, and the same approximated value. If a state is moved by
in any cartesian direction, the feature representation changes by one component/tile.
Uniformly offset tilings are offset from each other by exactly this unit distance. For a
two-dimensional space, we say that each tiling is offset by the displacement vector (1,1),
meaning that it is offset from the previous tiling by % times this vector. In these terms,
the asymmetrically offset tilings shown in the lower part of Figure 9.11 are offset by a
displacement vector of (1, 3).

Extensive studies have been made of the effect of different displacement vectors on the
generalization of tile coding (Parks and Militzer, 1991; An, 1991; An, Miller and Parks,
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1991; Miller, An, Glanz and Carter, 1990), assessing their homegeneity and tendency
toward diagonal artifacts like those seen for the (1,1) displacement vectors. Based on this
work, Miller and Glanz (1996) recommend using displacement vectors consisting of the
first odd integers. In particular, for a continuous space of dimension k, a good choice is
to use the first odd integers (1,3,5,7,...,2k — 1), with n (the number of tilings) set to an
integer power of 2 greater than or equal to 4k. This is what we have done to produce the
tilings in the lower half of Figure 9.11, in which k = 2, n = 23 > 4k, and the displacement
vector is (1,3). In a three-dimensional case, the first four tilings would be offset in total
from a base position by (0,0,0), (1,3,5), (2,6,10), and (3,9,15). Open-source software
that can efficiently make tilings like this for any & is readily available.

In choosing a tiling strategy, one has to pick the number of the tilings and the shape of
the tiles. The number of tilings, along with the size of the tiles, determines the resolution
or fineness of the asymptotic approximation, as in general coarse coding and illustrated
in Figure 9.8. The shape of the tiles will determine the nature of generalization as in
Figure 9.7. Square tiles will generalize roughly equally in each dimension as indicated in
Figure 9.11 (lower). Tiles that are elongated along one dimension, such as the stripe tilings
in Figure 9.12 (middle), will promote generalization along that dimension. The tilings in
Figure 9.12 (middle) are also denser and thinner on the left, promoting discrimination
along the horizonal dimension at lower values along that dimension. The diagonal stripe
tiling in Figure 9.12 (right) will promote generalization along one diagonal. In higher
dimensions, axis-aligned stripes correspond to ignoring some of the dimensions in some
of the tilings, that is, to hyperplanar slices. Irregular tilings such as shown in Figure 9.12
(left) are also possible, though rare in practice and beyond the standard software.

N
7
i

Irregular Log stripes Diagonal stripes

Figure 9.12: Tilings need not be grids. They can be arbitrarily shaped and non-uniform, while
still in many cases being computationally efficient to compute.

In practice, it is often desirable to use different shaped tiles in different tilings. For
example, one might use some vertical stripe tilings and some horizontal stripe tilings.
This would encourage generalization along either dimension. However, with stripe tilings
alone it is not possible to learn that a particular conjunction of horizontal and vertical
coordinates has a distinctive value (whatever is learned for it will bleed into states with the
same horizontal and vertical coordinates). For this one needs the conjunctive rectangular
tiles such as originally shown in Figure 9.9. With multiple tilings—some horizontal, some
vertical, and some conjunctive—one can get everything: a preference for generalizing
along each dimension, yet the ability to learn specific values for conjunctions (see Sutton,
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1996 for examples). The choice of tilings determines generalization, and until this choice
can be effectively automated, it is important that tile coding enables the choice to be
made flexibly and in a way that makes sense to people.

Another useful trick for reducing memory requirements is hashing—a consistent pseudo-
random collapsing of a large tiling into a much smaller set of tiles. Hashing produces
tiles consisting of noncontiguous, disjoint regions randomly spread throughout the state
space, but that still form an exhaustive partition. For example,
one tile might consist of the four subtiles shown to the right.
Through hashing, memory requirements are often reduced by
large factors with little loss of performance. This is possible
because high resolution is needed in only a small fraction of the
state space. Hashing frees us from the curse of dimensionality
in the sense that memory requirements need not be exponential
in the number of dimensions, but need merely match the real
demands of the task. Open-source implementations of tile
coding commonly include efficient hashing.

one
tile

Exercise 9.4 Suppose we believe that one of two state dimensions is more likely to have
an effect on the value function than is the other, that generalization should be primarily
across this dimension rather than along it. What kind of tilings could be used to take
advantage of this prior knowledge? |

9.5.5 Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to continuous-
valued features. Rather than each feature being either 0 or 1, it can be anything in the
interval [0, 1], reflecting various degrees to which the feature is present. A typical RBF
feature, z;, has a Gaussian (bell-shaped) response z;(s) dependent only on the distance
between the state, s, and the feature’s prototypical or center state, ¢;, and relative to the
feature’s width, o;:

) e ().

2
20;

The norm or distance metric of course can be chosen in whatever way seems most
appropriate to the states and task at hand. The figure below shows a one-dimensional
example with a Euclidean distance metric.

“
i ¢ Citv1

Figure 9.13: One-dimensional radial basis functions.
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The primary advantage of RBFs over binary features is that they produce approximate
functions that vary smoothly and are differentiable. Although this is appealing, in most
cases it has no practical significance. Nevertheless, extensive studies have been made of
graded response functions such as RBF's in the context of tile coding (An, 1991; Miller et
al.,; 1991; An et al., 1991; Lane, Handelman and Gelfand, 1992). All of these methods
require substantial additional computational complexity (over tile coding) and often
reduce performance when there are more than two state dimensions. In high dimensions
the edges of tiles are much more important, and it has proven difficult to obtain well
controlled graded tile activations near the edges.

An RBF network is a linear function approximator using RBFs for its features. Learning
is defined by equations (9.7) and (9.8), exactly as in other linear function approximators.
In addition, some learning methods for RBF networks change the centers and widths of
the features as well, bringing them into the realm of nonlinear function approximators.
Nonlinear methods may be able to fit target functions much more precisely. The downside
to RBF networks, and to nonlinear RBF networks especially, is greater computational
complexity and, often, more manual tuning before learning is robust and efficient.

9.6 Selecting Step-Size Parameters Manually

Most SGD methods require the designer to select an appropriate step-size parameter «.
Ideally this selection would be automated, and in some cases it has been, but for most
cases it is still common practice to set it manually. To do this, and to better understand
the algorithms, it is useful to develop some intuitive sense of the role of the step-size
parameter. Can we say in general how it should be set?

Theoretical considerations are unfortunately of little help. The theory of stochastic
approximation gives us conditions (2.7) on a slowly decreasing step-size sequence that are
sufficient to guarantee convergence, but these tend to result in learning that is too slow.
The classical choice oy = 1/¢, which produces sample averages in tabular MC methods, is
not appropriate for TD methods, for nonstationary problems, or for any method using
function approximation. For linear methods, there are recursive least-squares methods
that set an optimal matriz step size, and these methods can be extended to temporal-
difference learning as in the LSTD method described in Section 9.8, but these require
O(d?) step-size parameters, or d times more parameters than we are learning. For this
reason we rule them out for use on large problems where function approximation is most
needed.

To get some intuitive feel for how to set the step-size parameter manually, it is best
to go back momentarily to the tabular case. There we can understand that a step size
of a = 1 will result in a complete elimination of the sample error after one target (see
(2.4) with a step size of one). As discussed on page 201, we usually want to learn slower
than this. In the tabular case, a step size of &« = 11—0 would take about 10 experiences to
converge approximately to their mean target, and if we wanted to learn in 100 experiences

we would use o = ﬁ. In general, if & = 1, then the tabular estimate for a state will

p=
approach the mean of its targets, with the most recent targets having the greatest effect,

after about 7 experiences with the state.
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With general function approximation there is not such a clear notion of number of
experiences with a state, as each state may be similar to and dissimilar from all the others
to various degrees. However, there is a similar rule that gives similar behavior in the case
of linear function approximation. Suppose you wanted to learn in about 7 experiences
with substantially the same feature vector. A good rule of thumb for setting the step-size
parameter of linear SGD methods is then

a=(rE[x'x])"", (9.19)

where x is a random feature vector chosen from the same distribution as input vectors
will be in the SGD. This method works best if the feature vectors do not vary greatly in
length; ideally x "x is a constant.

Ezercise 9.5 Suppose you are using tile coding to transform a seven-dimensional continuous
state space into binary feature vectors to estimate a state value function 0(s,w) &~ v, (s).
You believe that the dimensions do not interact strongly, so you decide to use eight tilings
of each dimension separately (stripe tilings), for 7 x 8 = 56 tilings. In addition, in case
there are some pairwise interactions between the dimensions, you also take all (;) =21
pairs of dimensions and tile each pair conjunctively with rectangular tiles. You make
two tilings for each pair of dimensions, making a grand total of 21 x 2 + 56 = 98 tilings.
Given these feature vectors, you suspect that you still have to average out some noise,
so you decide that you want learning to be gradual, taking about 10 presentations with
the same feature vector before learning nears its asymptote. What step-size parameter «
should you use? Why? O

9.7 Nonlinear Function Approximation:
Artificial Neural Networks

Artificial neural networks (ANNs) are widely used for nonlinear function approximation.
An ANN is a network of interconnected units that have some of the properties of neurons,
the main components of nervous systems. ANNs have a long history, with the latest
advances in training deeply-layered ANNs (deep learning) being responsible for some
of the most impressive abilities of machine learning systems, including reinforcement
learning systems. In Chapter 16 we describe several impressive examples of reinforcement
learning systems that use ANN function approximation.

Figure 9.14 shows a generic feedforward ANN, meaning that there are no loops in the
network, that is, there are no paths within the network by which a unit’s output can
influence its input. The network in the figure has an output layer consisting of two output
units, an input layer with four input units, and two “hidden layers”: layers that are neither
input nor output layers. A real-valued weight is associated with each link. A weight
roughly corresponds to the efficacy of a synaptic connection in a real neural network (see
Section 15.1). If an ANN has at least one loop in its connections, it is a recurrent rather
than a feedforward ANN. Although both feedforward and recurrent ANNs have been
used in reinforcement learning, here we look only at the simpler feedforward case.
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Figure 9.14: A generic feedforward ANN with four input units, two output units, and two
hidden layers.

The units (the circles in Figure 9.14) are typically semi-linear units, meaning that they
compute a weighted sum of their input signals and then apply to the result a nonlinear
function, called the activation function, to produce the unit’s output, or activation.
Different activation functions are used, but they are typically S-shaped, or sigmoid,
functions such as the logistic function f(x) =1/(1 + e~7%), though sometimes the rectifier
nonlinearity f(z) = max(0,z) is used. A step function like f(z) = 1if > 6, and 0
otherwise, results in a binary unit with threshold 6. The units in a network’s input layer
are somewhat different in having their activations set to externally-supplied values that
are the inputs to the function the network is approximating.

The activation of each output unit of a feedforward ANN is a nonlinear function of the
activation patterns over the network’s input units. The functions are parameterized by
the network’s connection weights. An ANN with no hidden layers can represent only a
very small fraction of the possible input-output functions. However an ANN with a single
hidden layer containing a large enough finite number of sigmoid units can approximate
any continuous function on a compact region of the network’s input space to any degree
of accuracy (Cybenko, 1989). This is also true for other nonlinear activation functions
that satisfy mild conditions, but nonlinearity is essential: if all the units in a multi-layer
feedforward ANN have linear activation functions, the entire network is equivalent to a
network with no hidden layers (because linear functions of linear functions are themselves
linear).

Despite this “universal approximation” property of one-hidden-layer ANNs, both
experience and theory show that approximating the complex functions needed for many
artificial intelligence tasks is made easier—indeed may require—abstractions that are
hierarchical compositions of many layers of lower-level abstractions, that is, abstractions
produced by deep architectures such as ANNs with many hidden layers. (See Bengio,
2009, for a thorough review.) The successive layers of a deep ANN compute increasingly
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abstract representations of the network’s “raw” input, with each unit providing a feature
contributing to a hierarchical representation of the overall input-output function of the
network.

Training the hidden layers of an ANN is therefore a way to automatically create
features appropriate for a given problem so that hierarchical representations can be
produced without relying exclusively on hand-crafted features. This has been an enduring
challenge for artificial intelligence and explains why learning algorithms for ANNs with
hidden layers have received so much attention over the years. ANNs typically learn by a
stochastic gradient method (Section 9.3). Each weight is adjusted in a direction aimed at
improving the network’s overall performance as measured by an objective function to
be either minimized or maximized. In the most common supervised learning case, the
objective function is the expected error, or loss, over a set of labeled training examples. In
reinforcement learning, ANNs can use TD errors to learn value functions, or they can aim
to maximize expected reward as in a gradient bandit (Section 2.8) or a policy-gradient
algorithm (Chapter 13). In all of these cases it is necessary to estimate how a change
in each connection weight would influence the network’s overall performance, in other
words, to estimate the partial derivative of an objective function with respect to each
weight, given the current values of all the network’s weights. The gradient is the vector
of these partial derivatives.

The most successful way to do this for ANNs with hidden layers (provided the units
have differentiable activation functions) is the backpropagation algorithm, which consists
of alternating forward and backward passes through the network. Each forward pass
computes the activation of each unit given the current activations of the network’s input
units. After each forward pass, a backward pass efficiently computes a partial derivative
for each weight. (As in other stochastic gradient learning algorithms, the vector of these
partial derivatives is an estimate of the true gradient.) In Section 15.10 we discuss
methods for training ANNs with hidden layers that use reinforcement learning principles
instead of backpropagation. These methods are less efficient than the backpropagation
algorithm, but they may be closer to how real neural networks learn.

The backpropagation algorithm can produce good results for shallow networks having
1 or 2 hidden layers, but it may not work well for deeper ANNs. In fact, training a
network with k£ + 1 hidden layers can actually result in poorer performance than training
a network with k£ hidden layers, even though the deeper network can represent all the
functions that the shallower network can (Bengio, 2009). Explaining results like these
is not easy, but several factors are important. First, the large number of weights in
a typical deep ANN makes it difficult to avoid the problem of overfitting, that is, the
problem of failing to generalize correctly to cases on which the network has not been
trained. Second, backpropagation does not work well for deep ANNs because the partial
derivatives computed by its backward passes either decay rapidly toward the input side
of the network, making learning by deep layers extremely slow, or the partial derivatives
grow rapidly toward the input side of the network, making learning unstable. Methods
for dealing with these problems are largely responsible for many impressive recent results
achieved by systems that use deep ANNs.

Overfitting is a problem for any function approximation method that adjusts functions
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with many degrees of freedom on the basis of limited training data. It is less of a
problem for online reinforcement learning that does not rely on limited training sets, but
generalizing effectively is still an important issue. Overfitting is a problem for ANNs in
general, but especially so for deep ANNs because they tend to have very large numbers
of weights. Many methods have been developed for reducing overfitting. These include
stopping training when performance begins to decrease on validation data different
from the training data (cross validation), modifying the objective function to discourage
complexity of the approximation (regularization), and introducing dependencies among
the weights to reduce the number of degrees of freedom (e.g., weight sharing).

A particularly effective method for reducing overfitting by deep ANNs is the dropout
method introduced by Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov
(2014). During training, units are randomly removed from the network (dropped out)
along with their connections. This can be thought of as training a large number of
“thinned” networks. Combining the results of these thinned networks at test time is a way
to improve generalization performance. The dropout method efficiently approximates this
combination by multiplying each outgoing weight of a unit by the probability that that
unit was retained during training. Srivastava et al. found that this method significantly
improves generalization performance. It encourages individual hidden units to learn
features that work well with random collections of other features. This increases the
versatility of the features formed by the hidden units so that the network does not overly
specialize to rarely-occurring cases.

Hinton, Osindero, and Teh (2006) took a major step toward solving the problem of
training the deep layers of a deep ANN in their work with deep belief networks, layered
networks closely related to the deep ANNs discussed here. In their method, the deepest
layers are trained one at a time using an unsupervised learning algorithm. Without
relying on the overall objective function, unsupervised learning can extract features that
capture statistical regularities of the input stream. The deepest layer is trained first, then
with input provided by this trained layer, the next deepest layer is trained, and so on,
until the weights in all, or many, of the network’s layers are set to values that now act as
initial values for supervised learning. The network is then fine-tuned by backpropagation
with respect to the overall objective function. Studies show that this approach generally
works much better than backpropagation with weights initialized with random values.
The better performance of networks trained with weights initialized this way could be
due to many factors, but one idea is that this method places the network in a region of
weight space from which a gradient-based algorithm can make good progress.

Batch normalization (Ioffe and Szegedy, 2015) is another technique that makes it easier
to train deep ANNs. It has long been known that ANN learning is easier if the network
input is normalized, for example, by adjusting each input variable to have zero mean and
unit variance. Batch normalization for training deep ANNs normalizes the output of deep
layers before they feed into the following layer. Ioffe and Szegedy (2015) used statistics
from subsets, or “mini-batches,” of training examples to normalize these between-layer
signals to improve the learning rate of deep ANNs.

Another technique useful for training deep ANNs is deep residual learning (He, Zhang,
Ren, and Sun, 2016). Sometimes it is easier to learn how a function differs from the
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identity function than to learn the function itself. Then adding this difference, or residual
function, to the input produces the desired function. In deep ANNSs, a block of layers
can be made to learn a residual function simply by adding shortcut, or skip, connections
around the block. These connections add the input to the block to its output, and
no additional weights are needed. He et al. (2016) evaluated this method using deep
convolutional networks with skip connections around every pair of adjacent layers, finding
substantial improvement over networks without the skip connections on benchmark image
classification tasks. Both batch normalization and deep residual learning were used in
the reinforcement learning application to the game of Go that we describe in Chapter 16.

A type of deep ANN that has proven to be very successful in applications, including
impressive reinforcement learning applications (Chapter 16), is the deep convolutional
network. This type of network is specialized for processing high-dimensional data arranged
in spatial arrays, such as images. It was inspired by how early visual processing works in
the brain (LeCun, Bottou, Bengio and Haffner, 1998). Because of its special architecture,
a deep convolutional network can be trained by backpropagation without resorting to
methods like those described above to train the deep layers.

Figure 9.15 illustrates the architecture of a deep convolutional network. This instance,
from LeCun et al. (1998), was designed to recognize hand-written characters. It consists
of alternating convolutional and subsampling layers, followed by several fully connected
final layers. Each convolutional layer produces a number of feature maps. A feature
map is a pattern of activity over an array of units, where each unit performs the same
operation on data in its receptive field, which is the part of the data it “sees” from the
preceding layer (or from the external input in the case of the first convolutional layer).
The units of a feature map are identical to one another except that their receptive fields,
which are all the same size and shape, are shifted to different locations on the arrays
of incoming data. Units in the same feature map share the same weights. This means
that a feature map detects the same feature no matter where it is located in the input
array. In the network in Figure 9.15, for example, the first convolutional layer produces 6
feature maps, each consisting of 28 x 28 units. Each unit in each feature map has a 5 x
5 receptive field, and these receptive fields overlap (in this case by four columns and four
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Figure 9.15: Deep Convolutional Network. Republished with permission of Proceedings of the
IEEE, from Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio,
and Haffner, volume 86, 1998; permission conveyed through Copyright Clearance Center, Inc.
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rows). Consequently, each of the 6 feature maps is specified by just 25 adjustable weights.

The subsampling layers of a deep convolutional network reduce the spatial resolution of
the feature maps. Each feature map in a subsampling layer consists of units that average
over a receptive field of units in the feature maps of the preceding convolutional layer.
For example, each unit in each of the 6 feature maps in the first subsampling layer of the
network of Figure 9.15 averages over a 2 X 2 non-overlapping receptive field over one of
the feature maps produced by the first convolutional layer, resulting in six 14 x 14 feature
maps. Subsampling layers reduce the network’s sensitivity to the spatial locations of the
features detected, that is, they help make the network’s responses spatially invariant.
This is useful because a feature detected at one place in an image is likely to be useful at
other places as well.

Advances in the design and training of ANNs—of which we have only mentioned a
few—all contribute to reinforcement learning. Although current reinforcement learning
theory is mostly limited to methods using tabular or linear function approximation
methods, the impressive performances of notable reinforcement learning applications owe
much of their success to nonlinear function approximation by multi-layer ANNs. We
discuss several of these applications in Chapter 16.

9.8 Least-Squares TD

All the methods we have discussed so far in this chapter have required computation per
time step proportional to the number of parameters. With more computation, however,
one can do better. In this section we present a method for linear function approximation
that is arguably the best that can be done for this case.

As we established in Section 9.4 TD(0) with linear function approximation converges
asymptotically (for appropriately decreasing step sizes) to the TD fixed point:

wrp = A™'b,
where
A= E[xt(xt — ’YXt_;'_l)T:I and b= E[Rt+1xt] .

Why, one might ask, must we compute this solution iteratively? This is wasteful of data!
Could one not do better by computing estimates of A and b, and then directly computing
the TD fixed point? The Least-Squares TD algorithm, commonly known as LSTD, does
exactly this. It forms the natural estimates

t—1 t—1
A=) xp(xk—7xpq1) |+l and by =Y Riyixy, (9-20)
k=0 k=0

where I is the identity matrix, and I, for some small € > 0, ensures that Kt is always
invertible. It might seem that these estimates should both be divided by ¢, and indeed
they should; as defined here, these are really estimates of ¢t times A and t times b.
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However, the extra ¢ factors cancel out when LSTD uses these estimates to estimate the
TD fixed point as

w; = A, 'b,. (9.21)

This algorithm is the most data efficient form of linear TD(0), but it is also more
expensive computationally. Recall that semi-gradient TD(0) requires memory and per-
step computation that is only O(d).

How complex is LSTD? As it is written above the complexity seems to increase with
t, but the two approximations in (9.20) could be implemented incrementally using the
techniques we have covered earlier (e.g., in Chapter 2) so that they can be done in
constant time per step. Even so, the update for ;&t would involve an outer product (a
column vector times a row vector) and thus would be a matrix update; its computational
complexity would be O(d?), and of course the memory required to hold the :&t matrix
would be O(d?).

A potentially greater problem is that our final computation (9.21) uses the inverse
of Kt, and the computational complexity of a general inverse computation is O(d?).
Fortunately, an inverse of a matrix of our special form—a sum of outer products—can
also be updated incrementally with only O(d?) computations, as

~ —~ —1

At = (Atfl + x4 (x¢ — ’7xt+1)T> (from (9.20))

_ Aill B A x(x — ’}/Xt+1l—r71'?t_,117 (9.22)
L4 (¢ = vxeq1) TAL Xy

for ¢t > 0, with ;&0 = eI. Although the identity (9.22), known as the Sherman-Morrison
formula, is superficially complicated, it involves only vector-matrix and vector-vector
multiplications and thus is only O(d?). Thus we can store the inverse matrix A; L
maintain it with (9.22), and then use it in (9.21), all with only O(d?) memory and
per-step computation. The complete algorithm is given in the box on the next page.
Of course, O(d?) is still significantly more expensive than the O(d) of semi-gradient
TD. Whether the greater data efficiency of LSTD is worth this computational expense
depends on how large d is, how important it is to learn quickly, and the expense of other
parts of the system. The fact that LSTD requires no step-size parameter is sometimes
also touted, but the advantage of this is probably overstated. LSTD does not require a
step size, but it does requires ¢; if € is chosen too small the sequence of inverses can vary
wildly, and if ¢ is chosen too large then learning is slowed. In addition, LSTD’s lack of a
step-size parameter means that it never forgets. This is sometimes desirable, but it is
problematic if the target policy m changes as it does in reinforcement learning and GPI.
In control applications, LSTD typically has to be combined with some other mechanism
to induce forgeting, mooting any initial advantage of not requiring a step-size parameter.
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LSTD for estimating © = w'x(-) ~ v, (O(d?) version)

Input: feature representation x : §* — R? such that x(terminal) = 0
Algorithm parameter: small € > 0

Al 1 A d x d matrix
b+« 0 A d-dimensional vector
Loop for each episode:
Initialize S; x < x(S)
Loop for each step of episode:
Choose and take action A ~ 7(-|S), observe R, S’; x" < x(S5")
vV ET(X —yx’)
Al A — (A x)vT/(14+vTx)
b+« b+ Rx
w < A-1b
S+ S x+x
until S’ is terminal

9.9 Memory-based Function Approximation

So far we have discussed the parametric approach to approximating value functions. In
this approach, a learning algorithm adjusts the parameters of a functional form intended
to approximate the value function over a problem’s entire state space. Each update,
s+ g, is a training example used by the learning algorithm to change the parameters
with the aim of reducing the approximation error. After the update, the training example
can be discarded (although it might be saved to be used again). When an approximate
value of a state (which we will call the query state) is needed, the function is simply
evaluated at that state using the latest parameters produced by the learning algorithm.

Memory-based function approximation methods are very different. They simply save
training examples in memory as they arrive (or at least save a subset of the examples)
without updating any parameters. Then, whenever a query state’s value estimate is
needed, a set of examples is retrieved from memory and used to compute a value estimate
for the query state. This approach is sometimes called lazy learning because processing
training examples is postponed until the system is queried to provide an output.

Memory-based function approximation methods are prime examples of nonparametric
methods. Unlike parametric methods, the approximating function’s form is not limited
to a fixed parameterized class of functions, such as linear functions or polynomials, but is
instead determined by the training examples themselves, together with some means for
combining them to output estimated values for query states. As more training examples
accumulate in memory, one expects nonparametric methods to produce increasingly
accurate approximations of any target function.
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There are many different memory-based methods depending on how the stored training
examples are selected and how they are used to respond to a query. Here, we focus on
local-learning methods that approximate a value function only locally in the neighborhood
of the current query state. These methods retrieve a set of training examples from memory
whose states are judged to be the most relevant to the query state, where relevance
usually depends on the distance between states: the closer a training example’s state is
to the query state, the more relevant it is considered to be, where distance can be defined
in many different ways. After the query state is given a value, the local approximation is
discarded.

The simplest example of the memory-based approach is the nearest neighbor method,
which simply finds the example in memory whose state is closest to the query state and
returns that example’s value as the approximate value of the query state. In other words,
if the query state is s, and s’ — ¢ is the example in memory in which s’ is the closest
state to s, then g is returned as the approximate value of s. Slightly more complicated
are weighted average methods that retrieve a set of nearest neighbor examples and return
a weighted average of their target values, where the weights generally decrease with
increasing distance between their states and the query state. Locally weighted regression is
similar, but it fits a surface to the values of a set of nearest states by means of a parametric
approximation method that minimizes a weighted error measure like (9.1), where the
weights depend on distances from the query state. The value returned is the evaluation of
the locally-fitted surface at the query state, after which the local approximation surface
is discarded.

Being nonparametric, memory-based methods have the advantage over parametric
methods of not limiting approximations to pre-specified functional forms. This allows
accuracy to improve as more data accumulates. Memory-based local approximation
methods have other properties that make them well suited for reinforcement learning.
Because trajectory sampling is of such importance in reinforcement learning, as discussed
in Section 8.6, memory-based local methods can focus function approximation on local
neighborhoods of states (or state—action pairs) visited in real or simulated trajectories.
There may be no need for global approximation because many areas of the state space will
never (or almost never) be reached. In addition, memory-based methods allow an agent’s
experience to have a relatively immediate affect on value estimates in the neighborhood
of the current state, in contrast with a parametric method’s need to incrementally adjust
parameters of a global approximation.

Avoiding global approximation is also a way to address the curse of dimensionality.
For example, for a state space with k& dimensions, a tabular method storing a global
approximation requires memory exponential in k. On the other hand, in storing examples
for a memory-based method, each example requires memory proportional to k, and the
memory required to store, say, n examples is linear in n. Nothing is exponential in k or
n. Of course, the critical remaining issue is whether a memory-based method can answer
queries quickly enough to be useful to an agent. A related concern is how speed degrades
as the size of the memory grows. Finding nearest neighbors in a large database can take
too long to be practical in many applications.
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Proponents of memory-based methods have developed ways to accelerate the nearest
neighbor search. Using parallel computers or special purpose hardware is one approach;
another is the use of special multi-dimensional data structures to store the training data.
One data structure studied for this application is the k-d tree (short for k-dimensional
tree), which recursively splits a k-dimensional space into regions arranged as nodes of a
binary tree. Depending on the amount of data and how it is distributed over the state
space, nearest-neighbor search using k-d trees can quickly eliminate large regions of the
space in the search for neighbors, making the searches feasible in some problems where
naive searches would take too long.

Locally weighted regression additionally requires fast ways to do the local regression
computations which have to be repeated to answer each query. Researchers have developed
many ways to address these problems, including methods for forgetting entries in order to
keep the size of the database within bounds. The Bibliographic and Historical Comments
section at the end of this chapter points to some of the relevant literature, including a
selection of papers describing applications of memory-based learning to reinforcement
learning.

9.10 Kernel-based Function Approximation

Memory-based methods such as the weighted average and locally weighted regression
methods described above depend on assigning weights to examples s’ — ¢ in the database
depending on the distance between s’ and a query states s. The function that assigns
these weights is called a kernel function, or simply a kernel. In the weighted average and
locally weighted regressions methods, for example, a kernel function k£ : R — R assigns
weights to distances between states. More generally, weights do not have to depend on
distances; they can depend on some other measure of similarity between states. In this
case, k : 8§ x 8§ — R, so that k(s, s’) is the weight given to data about s’ in its influence
on answering queries about s.

Viewed slightly differently, k(s, s’) is a measure of the strength of generalization from
s’ to s. Kernel functions numerically express how relevant knowledge about any state
is to any other state. As an example, the strengths of generalization for tile coding
shown in Figure 9.11 correspond to different kernel functions resulting from uniform and
asymmetrical tile offsets. Although tile coding does not explicitly use a kernel function
in its operation, it generalizes according to one. In fact, as we discuss more below, the
strength of generalization resulting from linear parametric function approximation can
always be described by a kernel function.

Kernel regression is the memory-based method that computes a kernel weighted average
of the targets of all examples stored in memory, assigning the result to the query state.
If D is the set of stored examples, and ¢(s’) denotes the target for state s’ in a stored
example, then kernel regression approximates the target function, in this case a value
function depending on D, as

0(s,D) = Z k(s,s)g(s). (9.23)

s’eD
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The weighted average method described above is a special case in which k(s, s’) is non-zero
only when s and s’ are close to one another so that the sum need not be computed over
all of D.

A common kernel is the Gaussian radial basis function (RBF) used in RBF function
approximation as described in Section 9.5.5. In the method described there, RBF's are
features whose centers and widths are either fixed from the start, with centers presumably
concentrated in areas where many examples are expected to fall, or are adjusted in some
way during learning. Barring methods that adjust centers and widths, this is a linear
parametric method whose parameters are the weights of each RBF, which are typically
learned by stochastic gradient, or semi-gradient, descent. The form of the approximation
is a linear combination of the pre-determined RBFs. Kernel regression with an RBF
kernel differs from this in two ways. First, it is memory-based: the RBFs are centered on
the states of the stored examples. Second, it is nonparametric: there are no parameters
to learn; the response to a query is given by (9.23).

Of course, many issues have to be addressed for practical implementation of kernel
regression, issues that are beyond the scope of our brief discussion. However, it turns out
that any linear parametric regression method like those we described in Section 9.4, with
states represented by feature vectors x(s) = (z1(s),22(8),...,z4(s))", can be recast as
kernel regression where k(s, s’) is the inner product of the feature vector representations
of s and s’; that is

k(s,s") = x(s) " x(s"). (9.24)

Kernel regression with this kernel function produces the same approximation that a linear
parametric method would if it used these feature vectors and learned with the same
training data.

We skip the mathematical justification for this, which can be found in any modern
machine learning text, such as Bishop (2006), and simply point out an important
implication. Instead of constructing features for linear parametric function approximators,
one can instead construct kernel functions directly without referring at all to feature
vectors. Not all kernel functions can be expressed as inner products of feature vectors
as in (9.24), but a kernel function that can be expressed like this can offer significant
advantages over the equivalent parametric method. For many sets of feature vectors,
(9.24) has a compact functional form that can be evaluated without any computation
taking place in the d-dimensional feature space. In these cases, kernel regression is much
less complex than directly using a linear parametric method with states represented by
these feature vectors. This is the so-called “kernel trick” that allows effectively working
in the high-dimension of an expansive feature space while actually working only with the
set of stored training examples. The kernel trick is the basis of many machine learning
methods, and researchers have shown how it can sometimes benefit reinforcement learning.
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9.11 Looking Deeper at On-policy Learning: Interest
and Emphasis

The algorithms we have considered so far in this chapter have treated all the states
encountered equally, as if they were all equally important. In some cases, however, we
are more interested in some states than others. In discounted episodic problems, for
example, we may be more interested in accurately valuing early states in the episode
than in later states where discounting may have made the rewards much less important
to the value of the start state. Or, if an action-value function is being learned, it may be
less important to accurately value poor actions whose value is much less than the greedy
action. Function approximation resources are always limited, and if they were used in a
more targeted way, then performance could be improved.

One reason we have treated all states encountered equally is that then we are updating
according to the on-policy distribution, for which stronger theoretical results are available
for semi-gradient methods. Recall that the on-policy distribution was defined as the
distribution of states encountered in an MDP while following the target policy. Now we
will generalize this concept significantly. Rather than having one on-policy distribution
for the MDP, we will have many. All of them will have in common that they are a
distribution of states encountered in trajectories while following the target policy, but
they will vary in how the trajectories are, in a sense, initiated.

We now introduce some new concepts. First we introduce a non-negative scalar measure,
a random variable I; called interest, indicating the degree to which we are interested in
accurately valuing the state (or state—action pair) at time ¢. If we don’t care at all about
the state, then the interest should be zero; if we fully care, it might be one, though it is
formally allowed to take any non-negative value. The interest can be set in any causal
way; for example, it may depend on the trajectory up to time ¢ or the learned parameters
at time ¢. The distribution p in the VE (9.1) is then defined as the distribution of
states encountered while following the target policy, weighted by the interest. Second, we
introduce another non-negative scalar random variable, the emphasis M;. This scalar
multiplies the learning update and thus emphasizes or de-emphasizes the learning done
at time t. The general n-step learning rule, replacing (9.15), is

Witn = Wipn—1+a M [Gripn — 0(S,Wigpn—1)] VO(St,Wiin—1), 0<t<T, (9.25)

with the n-step return given by (9.16) and the emphasis determined recursively from the
interest by:

Mt = It + ’)/th_n7 0 <t< T, (926)

with M; = 0, for all t < 0. These equations are taken to include the Monte Carlo case,
for which G114, = Gy, all the updates are made at end of the episode, n =T — ¢, and
Mt = It-

Example 9.4 illustrates how interest and emphasis can result in more accurate value
estimates.
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Example 9.4: Interest and Emphasis

To see the potential benefits of using interest and emphasis, consider the four-state
Markov reward process shown below:

i=1 1=0 1=0 1=0

. +1 . +1 O +1 () +1 D
vy =4 Ve =3 Vp = 2 U =1
Episodes start in the leftmost state, then transition one state to the right, with a
reward of +1, on each step until the terminal state is reached. The true value of
the first state is thus 4, of the second state 3, and so on as shown below each state.
These are the true values; the estimated values can only approximate these because
they are constrained by the parameterization. There are two components to the
parameter vector w = (’LUl,U)g)T, and the parameterization is as written inside
each state. The estimated values of the first two states are given by w; alone and
thus must be the same even though their true values are different. Similarly, the
estimated values of the third and fourth states are given by wy alone and must be
the same even though their true values are different. Suppose that we are interested

in accurately valuing only the leftmost state; we assign it an interest of 1 while all
the other states are assigned an interest of 0, as indicated above the states.

First consider applying gradient Monte Carlo algorithms to this problem. The
algorithms presented earlier in this chapter that do not take into account interest
and emphasis (in (9.7) and the box on page 202) will converge (for decreasing step
sizes) to the parameter vector woo = (3.5,1.5), which gives the first state—the only
one we are interested in—a value of 3.5 (i.e., intermediate between the true values
of the first and second states). The methods presented in this section that do use
interest and emphasis, on the other hand, will learn the value of the first state
exactly correctly; wy will converge to 4 while wo will never be updated because the
emphasis is zero in all states save the leftmost.

Now consider applying two-step semi-gradient TD methods. The methods from
earlier in this chapter without interest and emphasis (in (9.15) and (9.16) and
the box on page 209) will again converge to woo = (3.5,1.5), while the methods
with interest and emphasis converge to wo, = (4,2). The latter produces the
exactly correct values for the first state and for the third state (which the first state
bootstraps from) while never making any updates corresponding to the second or
fourth states.




236 Chapter 9: On-policy Prediction with Approximation

9.12 Summary

Reinforcement learning systems must be capable of generalization if they are to be
applicable to artificial intelligence or to large engineering applications. To achieve this,
any of a broad range of existing methods for supervised-learning function approrimation
can be used simply by treating each update as a training example.

Perhaps the most suitable supervised learning methods are those using parameterized
function approximation, in which the policy is parameterized by a weight vector w.
Although the weight vector has many components, the state space is much larger still,
and we must settle for an approximate solution. We defined the mean squared value error,
VE(w), as a measure of the error in the values v, (s) for a weight vector w under the
on-policy distribution, . The VE gives us a clear way to rank different value-function
approximations in the on-policy case.

To find a good weight vector, the most popular methods are variations of stochastic
gradient descent (SGD). In this chapter we have focused on the on-policy case with a fized
policy, also known as policy evaluation or prediction; a natural learning algorithm for this
case is n-step semi-gradient T'D, which includes gradient Monte Carlo and semi-gradient
TD(0) algorithms as the special cases when n=o00 and n=1 respectively. Semi-gradient
TD methods are not true gradient methods. In such bootstrapping methods (including
DP), the weight vector appears in the update target, yet this is not taken into account in
computing the gradient—thus they are semi-gradient methods. As such, they cannot
rely on classical SGD results.

Nevertheless, good results can be obtained for semi-gradient methods in the special case
of linear function approximation, in which the value estimates are sums of features times
corresponding weights. The linear case is the most well understood theoretically and
works well in practice when provided with appropriate features. Choosing the features
is one of the most important ways of adding prior domain knowledge to reinforcement
learning systems. They can be chosen as polynomials, but this case generalizes poorly in
the online learning setting typically considered in reinforcement learning. Better is to
choose features according the Fourier basis, or according to some form of coarse coding
with sparse overlapping receptive fields. Tile coding is a form of coarse coding that
is particularly computationally efficient and flexible. Radial basis functions are useful
for one- or two-dimensional tasks in which a smoothly varying response is important.
LSTD is the most data-efficient linear TD prediction method, but requires computation
proportional to the square of the number of weights, whereas all the other methods are of
complexity linear in the number of weights. Nonlinear methods include artificial neural
networks trained by backpropagation and variations of SGD; these methods have become
very popular in recent years under the name deep reinforcement learning.

Linear semi-gradient n-step TD is guaranteed to converge under standard conditions,
for all n, to a VE that is within a bound of the optimal error (achieved asymptotically
by Monte Carlo methods). This bound is always tighter for higher n and approaches
zero as n — 0o. However, in practice very high n results in very slow learning, and some
degree of bootstrapping (n < co) is usually preferrable, just as we saw in comparisons of
tabular n-step methods in Chapter 7 and in comparisons of tabular TD and Monte Carlo
methods in Chapter 6.
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Bibliographical and Historical Remarks

Generalization and function approximation have always been an integral part of rein-
forcement learning. Bertsekas and Tsitsiklis (1996), Bertsekas (2012), and Sugiyama et
al. (2013) present the state of the art in function approximation in reinforcement learning.
Some of the early work with function approximation in reinforcement learning is discussed
at the end of this section.

9.3

9.4

9.5

9.5.2

9.5.3

Gradient-descent methods for minimizing mean-squared error in supervised
learning are well known. Widrow and Hoff (1960) introduced the least-mean-
square (LMS) algorithm, which is the prototypical incremental gradient-descent
algorithm. Details of this and related algorithms are provided in many texts
(e.g., Widrow and Stearns, 1985; Bishop, 1995; Duda and Hart, 1973).

Semi-gradient TD(0) was first explored by Sutton (1984, 1988), as part of the
linear TD(A) algorithm that we will treat in Chapter 12. The term “semi-gradient”
to describe these bootstrapping methods is new to the second edition of this
book.

The earliest use of state aggregation in reinforcement learning may have been
Michie and Chambers’s BOXES system (1968). The theory of state aggregation
in reinforcement learning has been developed by Singh, Jaakkola, and Jordan
(1995) and Tsitsiklis and Van Roy (1996). State aggregation has been used in
dynamic programming from its earliest days (e.g., Bellman, 1957a).

Sutton (1988) proved convergence of linear TD(0) in the mean to the minimal
VE solution for the case in which the feature vectors, {x(s) : s € 8}, are linearly
independent. Convergence with probability 1 was proved by several researchers
at about the same time (Peng, 1993; Dayan and Sejnowski, 1994; Tsitsiklis,
1994; Gurvits, Lin, and Hanson, 1994). In addition, Jaakkola, Jordan, and Singh
(1994) proved convergence under online updating. All of these results assumed
linearly independent feature vectors, which implies at least as many components
to w; as there are states. Convergence for the more important case of general
(dependent) feature vectors was first shown by Dayan (1992). A significant
generalization and strengthening of Dayan’s result was proved by Tsitsiklis and
Van Roy (1997). They proved the main result presented in this section, the
bound on the asymptotic error of linear bootstrapping methods.

Our presentation of the range of possibilities for linear function approximation is
based on that by Barto (1990).

Konidaris, Osentoski, and Thomas (2011) introduced the Fourier basis in a
simple form suitable for reinforcement learning problems with multi-dimensional
continuous state spaces and functions that do not have to be periodic.

The term coarse coding is due to Hinton (1984), and our Figure 9.6 is based on
one of his figures. Waltz and Fu (1965) provide an early example of this type of
function approximation in a reinforcement learning system.
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9.5.4

9.5.5

9.6

9.6

Tile coding, including hashing, was introduced by Albus (1971, 1981). He de-
scribed it in terms of his “cerebellar model articulator controller,” or CMAC, as
tile coding is sometimes known in the literature. The term “tile coding” was new
to the first edition of this book, though the idea of describing CMAC in these
terms is taken from Watkins (1989). Tile coding has been used in many rein-
forcement learning systems (e.g., Shewchuk and Dean, 1990; Lin and Kim, 1991;
Miller, Scalera, and Kim, 1994; Sofge and White, 1992; Tham, 1994; Sutton, 1996;
Watkins, 1989) as well as in other types of learning control systems (e.g., Kraft and
Campagna, 1990; Kraft, Miller, and Dietz, 1992). This section draws heavily on
the work of Miller and Glanz (1996). General software for tile coding is available in
several languages (e.g., see http://incompleteideas.net/tiles/tiles3.html).

Function approximation using radial basis functions has received wide attention
ever since being related to ANNs by Broomhead and Lowe (1988). Powell (1987)
reviewed earlier uses of RBFs, and Poggio and Girosi (1989, 1990) extensively
developed and applied this approach.

Automatic methods for adapting the step-size parameter include RMSprop (Tiele-
man and Hinton, 2012), Adam (Kingma and Ba, 2015), stochastic meta-descent
methods such as Delta-Bar-Delta (Jacobs, 1988), its incremental generaliza-
tion (Sutton, 1992b, ¢; Mahmood et al., 2012), and nonlinear generalizations
(Schraudolph, 1999, 2002). Methods explicitly designed for reinforcement learn-
ing include AlphaBound (Dabney and Barto, 2012), SID and NOSID (Dabney,
2014), TIDBD (Kearney et al., in preparation) and the application of stochastic
meta-descent to policy gradient learning (Schraudolph, Yu, and Aberdeen, 2006).

The introduction of the threshold logic unit as an abstract model neuron by
McCulloch and Pitts (1943) was the beginning of ANNs. The history of ANNs as
learning methods for classification or regression has passed through several stages:
roughly, the Perceptron (Rosenblatt, 1962) and ADALINE (ADAptive LINear
Element) (Widrow and Hoff, 1960) stage of learning by single-layer ANNs, the
error-backpropagation stage (LeCun, 1985; Rumelhart, Hinton, and Williams,
1986) of learning by multi-layer ANNs; and the current deep-learning stage with
its emphasis on representation learning (e.g., Bengio, Courville, and Vincent,
2012; Goodfellow, Bengio, and Courville, 2016). Examples of the many books on
ANNs are Haykin (1994), Bishop (1995), and Ripley (2007).

ANNSs as function approximation for reinforcement learning goes back to the early
work of Farley and Clark (1954), who used reinforcement-like learning to modify
the weights of linear threshold functions representing policies. Widrow, Gupta,
and Maitra (1973) presented a neuron-like linear threshold unit implementing a
learning process they called learning with a critic or selective bootstrap adaptation,
a reinforcement-learning variant of the ADALINE algorithm. Werbos (1987,
1994) developed an approach to prediction and control that uses ANNs trained by
error backpropation to learn policies and value functions using TD-like algorithms.
Barto, Sutton, and Brouwer (1981) and Barto and Sutton (1981b) extended the
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9.8

idea of an associative memory network (e.g., Kohonen, 1977; Anderson, Silverstein,
Ritz, and Jones, 1977) to reinforcement learning. Barto, Anderson, and Sutton
(1982) used a two-layer ANN to learn a nonlinear control policy, and emphasized
the first layer’s role of learning a suitable representation. Hampson (1983, 1989)
was an early proponent of multilayer ANNs for learning value functions. Barto,
Sutton, and Anderson (1983) presented an actor—critic algorithm in the form of an
ANN learning to balance a simulated pole (see Sections 15.7 and 15.8). Barto and
Anandan (1985) introduced a stochastic version of Widrow et al.’s (1973) selective
bootstrap algorithm called the associative reward-penalty (Ar—_p) algorithm.
Barto (1985, 1986) and Barto and Jordan (1987) described multi-layer ANNs
consisting of Ag_p units trained with a globally-broadcast reinforcement signal
to learn classification rules that are not linearly separable. Barto (1985) discussed
this approach to ANNs and how this type of learning rule is related to others in
the literature at that time. (See Section 15.10 for additional discussion of this
approach to training multi-layer ANNs.) Anderson (1986, 1987, 1989) evaluated
numerous methods for training multilayer ANNs and showed that an actor—critic
algorithm in which both the actor and critic were implemented by two-layer
ANNSs trained by error backpropagation outperformed single-layer ANNs in the
pole-balancing and tower of Hanoi tasks. Williams (1988) described several ways
that backpropagation and reinforcement learning can be combined for training
ANNs. Gullapalli (1990) and Williams (1992) devised reinforcement learning
algorithms for neuron-like units having continuous, rather than binary, outputs.
Barto, Sutton, and Watkins (1990) argued that ANNs can play significant roles
for approximating functions required for solving sequential decision problems.
Williams (1992) related REINFORCE learning rules (Section 13.3) to the error
backpropagation method for training multi-layer ANNs. Tesauro’s TD-Gammon
(Tesauro 1992, 1994; Section 16.1) influentially demonstrated the learning abilities
of TD(A) algorithm with function approximation by multi-layer ANNs in learning
to play backgammon. The AlphaGo, AlphaGo Zero, and AlphaZero programs
of Silver et al. (2016, 2017a, b; Section 16.6) used reinforcement learning with
deep convolutional ANNs in achieving impressive results with the game of Go.
Schmidhuber (2015) reviews applications of ANNs in reinforcement learning,
including applications of recurrent ANNs.

LSTD is due to Bradtke and Barto (see Bradtke, 1993, 1994; Bradtke and Barto,
1996; Bradtke, Ydstie, and Barto, 1994), and was further developed by Boyan
(1999, 2002), Nedi¢ and Bertsekas (2003), and Yu (2010). The incremental update
of the inverse matrix has been known at least since 1949 (Sherman and Morrison,
1949). An extension of least-squares methods to control was introduced by
Lagoudakis and Parr (2003; Bugoniu, Lazaric, Ghavamzadeh, Munos, Babuska,
and De Schutter, 2012).
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9.9

9.10

9.11

Our discussion of memory-based function approximation is largely based on
the review of locally weighted learning by Atkeson, Moore, and Schaal (1997).
Atkeson (1992) discussed the use of locally weighted regression in memory-based
robot learning and supplied an extensive bibliography covering the history of
the idea. Stanfill and Waltz (1986) influentially argued for the importance of
memory based methods in artificial intelligence, especially in light of parallel
architectures then becoming available, such as the Connection Machine. Baird
and Klopf (1993) introduced a novel memory-based approach and used it as the
function approximation method for Q-learning applied to the pole-balancing task.
Schaal and Atkeson (1994) applied locally weighted regression to a robot juggling
control problem, where it was used to learn a system model. Peng (1995) used
the pole-balancing task to experiment with several nearest-neighbor methods
for approximating value functions, policies, and environment models. Tadepalli
and Ok (1996) obtained promising results with locally-weighted linear regression
to learn a value function for a simulated automatic guided vehicle task. Bottou
and Vapnik (1992) demonstrated surprising efficiency of several local learning
algorithms compared to non-local algorithms in some pattern recognition tasks,
discussing the impact of local learning on generalization.

Bentley (1975) introduced k-d trees and reported observing average running
time of O(log n) for nearest neighbor search over n records. Friedman, Bentley,
and Finkel (1977) clarified the algorithm for nearest neighbor search with k-d
trees. Omohundro (1987) discussed efficiency gains possible with hierarchical
data structures such as k-d-trees. Moore, Schneider, and Deng (1997) introduced
the use of k-d trees for efficient locally weighted regression.

The origin of kernel regression is the method of potential functions of Aizerman,
Braverman, and Rozonoer (1964). They likened the data to point electric charges
of various signs and magnitudes distributed over space. The resulting electric
potential over space produced by summing the potentials of the point charges
corresponded to the interpolated surface. In this analogy, the kernel function is
the potential of a point charge, which falls off as the reciprocal of the distance
from the charge. Connell and Utgoff (1987) applied an actor—critic method
to the pole-balancing task in which the critic approximated the value function
using kernel regression with an inverse-distance weighting. Predating widespread
interest in kernel regression in machine learning, these authors did not use the
term kernel, but referred to “Shepard’s method” (Shepard, 1968). Other kernel-
based approaches to reinforcement learning include those of Ormoneit and Sen
(2002), Dietterich and Wang (2002), Xu, Xie, Hu, and Lu (2005), Taylor and Parr
(2009), Barreto, Precup, and Pineau (2011), and Bhat, Farias, and Moallemi
(2012).

For Emphatic-TD methods, see the bibliographical notes to Section 11.8.
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The earliest example we know of in which function approximation methods were
used for learning value functions was Samuel’s checkers player (1959, 1967). Samuel
followed Shannon’s (1950) suggestion that a value function did not have to be exact to
be a useful guide to selecting moves in a game and that it might be approximated by
linear combination of features. In addition to linear function approximation, Samuel
experimented with lookup tables and hierarchical lookup tables called signature tables
(Griffith, 1966, 1974; Page, 1977; Biermann, Fairfield, and Beres, 1982).

At about the same time as Samuel’s work, Bellman and Dreyfus (1959) proposed using
function approximation methods with DP. (It is tempting to think that Bellman and
Samuel had some influence on one another, but we know of no reference to the other in
the work of either.) There is now a fairly extensive literature on function approximation
methods and DP, such as multigrid methods and methods using splines and orthogonal
polynomials (e.g., Bellman and Dreyfus, 1959; Bellman, Kalaba, and Kotkin, 1973; Daniel,
1976; Whitt, 1978; Reetz, 1977; Schweitzer and Seidmann, 1985; Chow and Tsitsiklis,
1991; Kushner and Dupuis, 1992; Rust, 1996).

Holland’s (1986) classifier system used a selective feature-match technique to generalize
evaluation information across state—action pairs. Each classifier matched a subset of states
having specified values for a subset of features, with the remaining features having arbitrary
values (“wild cards”). These subsets were then used in a conventional state-aggregation
approach to function approximation. Holland’s idea was to use a genetic algorithm
to evolve a set of classifiers that collectively would implement a useful action-value
function. Holland’s ideas influenced the early research of the authors on reinforcement
learning, but we focused on different approaches to function approximation. As function
approximators, classifiers are limited in several ways. First, they are state-aggregation
methods, with concomitant limitations in scaling and in representing smooth functions
efficiently. In addition, the matching rules of classifiers can implement only aggregation
boundaries that are parallel to the feature axes. Perhaps the most important limitation of
conventional classifier systems is that the classifiers are learned via the genetic algorithm,
an evolutionary method. As we discussed in Chapter 1, there is available during learning
much more detailed information about how to learn than can be used by evolutionary
methods. This perspective led us to instead adapt supervised learning methods for
use in reinforcement learning, specifically gradient-descent and ANN methods. These
differences between Holland’s approach and ours are not surprising because Holland’s
ideas were developed during a period when ANNs were generally regarded as being too
weak in computational power to be useful, whereas our work was at the beginning of
the period that saw widespread questioning of that conventional wisdom. There remain
many opportunities for combining aspects of these different approaches.

Christensen and Korf (1986) experimented with regression methods for modifying
coefficients of linear value function approximations in the game of chess. Chapman
and Kaelbling (1991) and Tan (1991) adapted decision-tree methods for learning value
functions. Explanation-based learning methods have also been adapted for learning
value functions, yielding compact representations (Yee, Saxena, Utgoff, and Barto, 1990;
Dietterich and Flann, 1995).






Chapter 10

On-policy Control with
Approximation

In this chapter we return to the control problem, now with parametric approximation of
the action-value function §(s,a, w) ~ q.(s, a), where w € R? is a finite-dimensional weight
vector. We continue to restrict attention to the on-policy case, leaving off-policy methods
to Chapter 11. The present chapter features the semi-gradient Sarsa algorithm, the
natural extension of semi-gradient TD(0) (last chapter) to action values and to on-policy
control. In the episodic case, the extension is straightforward, but in the continuing case
we have to take a few steps backward and re-examine how we have used discounting to
define an optimal policy. Surprisingly, once we have genuine function approximation we
have to give up discounting and switch to a new “average-reward” formulation of the
control problem, with new “differential” value functions.

Starting first in the episodic case, we extend the function approximation ideas presented
in the last chapter from state values to action values. Then we extend them to control
following the general pattern of on-policy GPI, using e-greedy for action selection. We
show results for n-step linear Sarsa on the Mountain Car problem. Then we turn to the
continuing case and repeat the development of these ideas for the average-reward case
with differential values.

10.1 Episodic Semi-gradient Control

The extension of the semi-gradient prediction methods of Chapter 9 to action values is
straightforward. In this case it is the approximate action-value function, § = ¢, that is
represented as a parameterized functional form with weight vector w. Whereas before we
considered random training examples of the form S; — U, now we consider examples
of the form S;, A; — U;. The update target U; can be any approximation of ¢, (S, A¢),
including the usual backed-up values such as the full Monte Carlo return (G;) or any
of the n-step Sarsa returns (7.4). The general gradient-descent update for action-value

243
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prediction is

Weir = Wi+ U = d(Si, A, W) | Va(Se, A wa). (10.1)
For example, the update for the one-step Sarsa method is

Wit = Wy + a[RtJrl +74(St1, At1, Wie) — G(St, Ar, wi) [VG(St, A, we). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy, this
method converges in the same way that TD(0) does, with the same kind of error bound
(9.14).

To form control methods, we need to couple such action-value prediction methods with
techniques for policy improvement and action selection. Suitable techniques applicable to
continuous actions, or to actions from large discrete sets, are a topic of ongoing research
with as yet no clear resolution. On the other hand, if the action set is discrete and not
too large, then we can use the techniques already developed in previous chapters. That
is, for each possible action a available in the current state S;, we can compute G(St, a, wy)
and then find the greedy action A} = argmax, §(S, a, w;). Policy improvement is then
done (in the on-policy case treated in this chapter) by changing the estimation policy to a
soft approximation of the greedy policy such as the e-greedy policy. Actions are selected
according to this same policy. Pseudocode for the complete algorithm is given in the box.

Episodic Semi-gradient Sarsa for Estimating ¢ =~ q.

Input: a differentiable action-value function parameterization ¢ : 8§ x A x R4 — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
W W+ a[R —q(S, A,W)]VQ(S, Aw)
Go to next episode
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
w —w+a[R+7q(S", A, w) — (S, A, w)|V§(S, A, w)
S5
A+ A

Example 10.1: Mountain Car Task Consider the task of driving an underpowered
car up a steep mountain road, as suggested by the diagram in the upper left of Figure 10.1.
The difficulty is that gravity is stronger than the car’s engine, and even at full throttle
the car cannot accelerate up the steep slope. The only solution is to first move away from
the goal and up the opposite slope on the left. Then, by applying full throttle the car
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Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(— maxq, 4(s,a,w)) learned during one run.

can build up enough inertia to carry it up the steep slope even though it is slowing down
the whole way. This is a simple example of a continuous control task where things have
to get worse in a sense (farther from the goal) before they can get better. Many control
methodologies have great difficulties with tasks of this kind unless explicitly aided by a
human designer.

The reward in this problem is —1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (—1), and zero throttle (0). The
car moves according to a simplified physics. Its position, x;, and velocity, &, are updated

by

Tt41 = bound [l’t + it—i—l}

441 = bound[dy 4+ 0.0014; — 0.0025 cos(3zy)],

where the bound operation enforces —1.2 < x44; < 0.5 and —0.07 < 2,7 < 0.07. In
addition, when ;41 reached the left bound, &1 was reset to zero. When it reached
the right bound, the goal was reached and the episode was terminated. Each episode
started from a random position x; € [—0.6,—0.4) and zero velocity. To convert the two
continuous state variables to binary features, we used grid-tilings as in Figure 9.9. We
used 8 tilings, with each tile covering 1/8th of the bounded distance in each dimension,
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and asymmetrical offsets as described in Section 9.5.4.1 The feature vectors x(s, a) created
by tile coding were then combined linearly with the parameter vector to approximate the
action-value function:

d
i(s,a,w) = w'x(s,a) = Zwi - x(s,a), (10.3)

for each pair of state, s, and action, a.

Figure 10.1 shows what typically happens while learning to solve this task with this
form of function approximation.? Shown is the negative of the value function (the cost-
to-go function) learned on a single run. The initial action values were all zero, which was
optimistic (all true values are negative in this task), causing extensive exploration to occur
even though the exploration parameter, €, was 0. This can be seen in the middle-top panel
of the figure, labeled “Step 428”. At this time not even one episode had been completed,
but the car has oscillated back and forth in the valley, following circular trajectories in
state space. All the states visited frequently are valued worse than unexplored states,
because the actual rewards have been worse than what was (unrealistically) expected.
This continually drives the agent away from wherever it has been, to explore new states,
until a solution is found.

Figure 10.2 shows several learning curves for semi-gradient Sarsa on this problem, with
various step sizes.

1000

Mountain Car *®
Steps per episode

log scale
averaged over 100 runs 200

100

Episode

Figure 10.2: Mountain Car learning curves for the semi-gradient Sarsa method with tile-coding
function approximation and e-greedy action selection. |

1In particular, we used the tile-coding software, available at http://incompleteideas.net/tiles/
tiles3.html, with iht=IHT(4096) and tiles(iht,8, [8*x/(0.5+1.2),8*xdot/(0.07+0.07)],A) to get

the indices of the ones in the feature vector for state (x,xdot) and action A.

”

2This data is actually from the “semi-gradient Sarsa()\)” algorithm that we will not meet until

Chapter 12, but semi-gradient Sarsa would behave similarly.
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10.2 Semi-gradient n-step Sarsa

We can obtain an n-step version of episodic semi-gradient Sarsa by using an n-step return
as the update target in the semi-gradient Sarsa update equation (10.1). The n-step return
immediately generalizes from its tabular form (7.4) to a function approximation form:

Grasn = Ripi+vRio+ 47" ' Rign+7"0(Si4n, Atn, Wegn—1),  t4+n < T, (10.4)

with Gy.pyn = Gy if t +n > T, as usual. The n-step update equation is

Witn = Witn—1+ & [Gritn — §(St, At Wign—1)] VG(St, At Wign—1), 0<t<T.
(10.5)

Complete pseudocode is given in the box below.

Episodic semi-gradient n-step Sarsa for estimating ¢ ~ ¢, or ¢,

Input: a differentiable action-value function parameterization §: 8 x A x R — R
Input: a policy 7 (if estimating ¢, )

Algorithm parameters: step size a > 0, small € > 0, a positive integer n

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

All store and access operations (S¢, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ m(-|Sy) or e-greedy wrt §(So, -, W)

T ¢ o0
Loop for t =0,1, 2,
| Ift <T, then:

| Take action A;

| Observe and store the next reward as R;1; and the next state as Siy;
| If S;41 is terminal, then:

| T+t+1

| else:

| Select and store Ay1q ~ 7(-|S¢+1) or e-greedy wrt §(Sit1,-, W)
| 7+ t—n+1 (7 is the time whose estimate is being updated)

| Ifr>0:

|

|

|

G o Tl i,
If 7+ n < T, then G — G+9"G(Sr4n, Argn, W) (Gririn)
W Wta [G — (S, Ar, W) VG(Sr, A, w)

Until =T -1

As we have seen before, performance is best if an intermediate level of bootstrapping
is used, corresponding to an n larger than 1. Figure 10.3 shows how this algorithm tends
to learn faster and obtain a better asymptotic performance at n==8 than at n=1 on the
Mountain Car task. Figure 10.4 shows the results of a more detailed study of the effect
of the parameters o and n on the rate of learning on this task.
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Figure 10.3: Performance of one-step vs 8-step semi-gradient Sarsa on the Mountain Car task.
Good step sizes were used: o« =0.5/8 for n =1 and a = 0.3/8 for n = 8.

300 - \ n=1

Mountain Car

Steps per episode 260}

averaged over
first 50 episodes
and 100 runs 240 -

220 , n=4
0 05 1 1.5

¢ x number of tilings (8)

Figure 10.4: Effect of the o and n on early performance of n-step semi-gradient Sarsa and
tile-coding function approximation on the Mountain Car task. As usual, an intermediate level of
bootstrapping (n = 4) performed best. These results are for selected a values, on a log scale,
and then connected by straight lines. The standard errors ranged from 0.5 (less than the line
width) for n = 1 to about 4 for n = 16, so the main effects are all statistically significant.

Ezxercise 10.1 'We have not explicitly considered or given pseudocode for any Monte Carlo
methods or in this chapter. What would they be like? Why is it reasonable not to give
pseudocode for them? How would they perform on the Mountain Car task? O

Ezxercise 10.2 Give pseudocode for semi-gradient one-step Expected Sarsa for control. O]

FEzercise 10.3 Why do the results shown in Figure 10.4 have higher standard errors at
large n than at small n? |
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks

We now introduce a third classical setting—alongside the episodic and discounted settings—
for formulating the goal in Markov decision problems (MDPs). Like the discounted
setting, the average reward setting applies to continuing problems, problems for which the
interaction between agent and environment goes on and on forever without termination
or start states. Unlike that setting, however, there is no discounting—the agent cares just
as much about delayed rewards as it does about immediate reward. The average-reward
setting is one of the major settings commonly considered in the classical theory of dynamic
programming and less-commonly in reinforcement learning. As we discuss in the next
section, the discounted setting is problematic with function approximation, and thus the
average-reward setting is needed to replace it.

In the average-reward setting, the quality of a policy 7 is defined as the average rate of
reward, or simply average reward, while following that policy, which we denote as r(w):

h

o1
r(m) = Jm = ZE[Rt | So, Ag:t—1~7] (10.6)
= lim E[R; [ So, Ag:t—1~7], (10.7)

= Z tr(s) Z m(als) Zp(slv r|s,a)r,

where the expectations are conditioned on the initial state, Sy, and on the subsequent
actions, Ag, A1, ..., As_1, being taken according to 7. u, is the steady-state distribution,
tr(8) = limyy oo Pr{S;=5 |Agp.t—1~7}, which is assumed to exist for any 7 and to be
independent of Sy. This assumption about the MDP is known as ergodicity. It means
that where the MDP starts or any early decision made by the agent can have only a
temporary effect; in the long run the expectation of being in a state depends only on the
policy and the MDP transition probabilities. Ergodicity is sufficient to guarantee the
existence of the limits in the equations above.

There are subtle distinctions that can be drawn between different kinds of optimality
in the undiscounted continuing case. Nevertheless, for most practical purposes it may
be adequate simply to order policies according to their average reward per time step,
in other words, according to their r(m). This quantity is essentially the average reward
under 7, as suggested by (10.7). In particular, we consider all policies that attain the
maximal value of r(7) to be optimal.

Note that the steady state distribution is the special distribution under which, if you
select actions according to 7, you remain in the same distribution. That is, for which

S hn() S wlals)n(s'|5,0) = ux (). (108)

In the average-reward setting, returns are defined in terms of differences between
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rewards and the average reward:
Gt = Rt+1 - T(?T) + Rt+2 - T‘(ﬂ') + Rt+3 —7‘(7’(’) + - (109)

This is known as the differential return, and the corresponding value functions are known
as differential value functions. They are defined in the same way and we will use the
same notation for them as we have all along: v;(s) = E.[G¢|S: = s] and ¢r(s,a) =
E[G¢|St = s, Ay = a] (similarly for v, and ¢.). Differential value functions also have
Bellman equations, just slightly different from those we have seen earlier. We simply
remove all vs and replace all rewards by the difference between the reward and the true
average reward:

v (8) = Zw(a\s) Zp(s',r|s, a) [7" —r(m) + 1)77(5')}7

a r,s’

Zps r|s,a) [r—r —|—Z (a'|s")gx (5, a)}

r,s’

v4(8) = mijp(s’, r|s,a) [r — max r(m) + v*(s’)] , and

r,s’
!/ !/ !
q«(s,a) = E p(s’,r|s,a) [r — max7(m) + max q.(s’,a )]
y T a’
T,8

(cf. (3.14), Exercise 3.17, (3.19), and (3.20)).
There is also a differential form of the two TD errors:

5t = Rt+1—Rt+1 -+ @(St+1,wt) - ’LA)(St,Wt), (1010)
and
6t = Rev1—Riv1 + 4(Se1, Avrr, we) — 4(Se, Ar, wy), (10.11)

where R; is an estimate at time ¢ of the average reward r(m). With these alternate
definitions, most of our algorithms and many theoretical results carry through to the
average-reward setting without change.

For example, the average reward version of semi-gradient Sarsa is defined just as in
(10.2) except with the differential version of the TD error. That is, by

Wit1 = Wi + adtVd(St, At, Wt), (1012)
with d; given by (10.11). The pseudocode for the complete algorithm is given in the box
on the next page.

Exercise 10.4 Give pseudocode for a differential version of semi-gradient Q-learning. [

Exercise 10.5 What equations are needed (beyond 10.10) to specify the differential
version of TD(0)? O
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Differential semi-gradient Sarsa for estimating ¢ ~ g,

Input: a differentiable action-value function parameterization §: 8 x A x R? — R
Algorithm parameters: step sizes «, 5 > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Initialize average reward estimate R € R arbitrarily (e.g., R = 0)

Initialize state S, and action A
Loop for each step:
Take action A, observe R, S’
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
§+ R—R+q¢(5, A, w)—q(S, A, w)
R+ R+ B6
W w + adV§(S, A, w)
S« s
A+ A

Ezercise 10.6 Consider a Markov reward process consisting of a ring of three states A, B,
and C, with state transitions going deterministically around the ring. A reward of +1 is
received upon arrival in A and otherwise the reward is 0. What are the differential values
of the three states? O

Example 10.2: An Access-Control Queuing Task This is a decision task involving
access control to a set of 10 servers. Customers of four different priorities arrive at a
single queue. If given access to a server, the customers pay a reward of 1, 2, 4, or 8 to
the server, depending on their priority, with higher priority customers paying more. In
each time step, the customer at the head of the queue is either accepted (assigned to one
of the servers) or rejected (removed from the queue, with a reward of zero). In either
case, on the next time step the next customer in the queue is considered. The queue
never empties, and the priorities of the customers in the queue are equally randomly
distributed. Of course a customer cannot be served if there is no free server; the customer
is always rejected in this case. Each busy server becomes free with probability p = 0.06
on each time step. Although we have just described them for definiteness, let us assume
the statistics of arrivals and departures are unknown. The task is to decide on each step
whether to accept or reject the next customer, on the basis of his priority and the number
of free servers, so as to maximize long-term reward without discounting.

In this example we consider a tabular solution to this problem. Although there is no
generalization between states, we can still consider it in the general function approximation
setting as this setting generalizes the tabular setting. Thus we have a differential action-
value estimate for each pair of state (number of free servers and priority of the customer
at the head of the queue) and action (accept or reject). Figure 10.5 shows the solution
found by differential semi-gradient Sarsa with parameters a = 0.01, 8 = 0.01, and € = 0.1.
The initial action values and R were zero.
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Figure 10.5: The policy and value function found by differential semi-gradient one-step Sarsa
on the access-control queuing task after 2 million steps. The drop on the right of the graph
is probably due to insufficient data; many of these states were never experienced. The value
learned for R was about 2.31. |

Exercise 10.7 Suppose there is an MDP that under any policy produces the deterministic
sequence of rewards +1,0,+1,0,+1,0, ... going on forever. Technically, this is not allowed
because it violates ergodicity; there is no stationary limiting distribution ., and the limit
(10.7) does not exist. Nevertheless, the average reward (10.6) is well defined; What is
it? Now consider two states in this MDP. From A, the reward sequence is exactly as
described above, starting with a +1, whereas, from B, the reward sequence starts with
a 0 and then continues with +1,0,+1,0,.... The differential return (10.9) is not well
defined for this case as the limit does not exist. To repair this, one could alternately
define the value of a state as

h
vr(s) = lim, lim ;yt (EW[RH_HSOZS] - r(7r)>. (10.13)
Under this definition, what are the values of states A and B? O

Ezercise 10.8 The pseudocode in the box on page 251 updates R, using d; as an error
rather than simply Ry1 — Rs41. Both errors work, but using d; is better. To see why,
consider the ring MRP of three states from Exercise 10.6. The estimate of the average
reward should tend towards its true value of % Suppose it was already there and was held
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stuck there. What would the sequence of R; — R; errors be? What would the sequence of
d; errors be (using (10.10))7 Which error sequence would produce a more stable estimate

of the average reward if the estimate were allowed to change in response to the errors?
Why? O

10.4 Deprecating the Discounted Setting

The continuing, discounted problem formulation has been very useful in the tabular case,
in which the returns from each state can be separately identified and averaged. But in the
approximate case it is questionable whether one should ever use this problem formulation.

To see why, consider an infinite sequence of returns with no beginning or end, and no
clearly identified states. The states might be represented only by feature vectors, which
may do little to distinguish the states from each other. As a special case, all of the feature
vectors may be the same. Thus one really has only the reward sequence (and the actions),
and performance has to be assessed purely from these. How could it be done? One way
is by averaging the rewards over a long interval—this is the idea of the average-reward
setting. How could discounting be used? Well, for each time step we could measure
the discounted return. Some returns would be small and some big, so again we would
have to average them over a sufficiently large time interval. In the continuing setting
there are no starts and ends, and no special time steps, so there is nothing else that
could be done. However, if you do this, it turns out that the average of the discounted
returns is proportional to the average reward. In fact, for policy w, the average of the
discounted returns is always r(m)/(1 — «y), that is, it is essentially the average reward,
r(m). In particular, the ordering of all policies in the average discounted return setting
would be exactly the same as in the average-reward setting. The discount rate y thus has
no effect on the problem formulation. It could in fact be zero and the ranking would be
unchanged.

This surprising fact is proven in the box on the next page, but the basic idea can
be seen via a symmetry argument. Each time step is exactly the same as every other.
With discounting, every reward will appear exactly once in each position in some return.
The tth reward will appear undiscounted in the ¢t — 1st return, discounted once in the
t — 2nd return, and discounted 999 times in the ¢ — 1000th return. The weight on the
tth reward is thus 1+~ ++2 +~3 4+ --- = 1/(1 — 7). Because all states are the same,
they are all weighted by this, and thus the average of the returns will be this times the
average reward, or r(m)/(1 — 7).

This example and the more general argument in the box show that if we optimized
discounted value over the on-policy distribution, then the effect would be identical to
optimizing undiscounted average reward; the actual value of v would have no effect. This
strongly suggests that discounting has no role to play in the definition of the control
problem with function approximation. One can nevertheless go ahead and use discounting
in solution methods. The discounting parameter v changes from a problem parameter
to a solution method parameter! However, in this case we unfortunately would not
be guaranteed to optimize average reward (or the equivalent discounted value over the
on-policy distribution).
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The Futility of Discounting in Continuing Problems

Perhaps discounting can be saved by choosing an objective that sums discounted
values over the distribution with which states occur under the policy:

= Z wr(s)vl(s) (where v is the discounted value function)

Z,u,, Z (als) ZZp s r|s,a)[r+yvl(s)) (Bellman Eq.)
=r(m)+ Z,u,r Z (als) ZZp s',rls, a)yv)(s") (from (10.7))
(m +WZW Zuw Z als)p(s'|s, a) (from (3.4))

r(m) + vzv;@')uﬂ(s') (from (10.8))

— r(m) + 7 ()

r(m) +yr(m) + ¥ J (7)

r(7) +yr(n) + y2r() + ¥Pr(r) 4+ - -
1

== ’y’l“(ﬂ').

The proposed discounted objective orders policies identically to the undiscounted
(average reward) objective. The discount rate v does not influence the ordering!

The root cause of the difficulties with the discounted control setting is that with
function approximation we have lost the policy improvement theorem (Section 4.2). It is
no longer true that if we change the policy to improve the discounted value of one state
then we are guaranteed to have improved the overall policy in any useful sense. That
guarantee was key to the theory of our reinforcement learning control methods. With
function approximation we have lost it!

In fact, the lack of a policy improvement theorem is also a theoretical lacuna for the
total-episodic and average-reward settings. Once we introduce function approximation
we can no longer guarantee improvement for any setting. In Chapter 13 we introduce an
alternative class of reinforcement learning algorithms based on parameterized policies,
and there we have a theoretical guarantee called the “policy-gradient theorem” which
plays a similar role as the policy improvement theorem. But for methods that learn
action values we seem to be currently without a local improvement guarantee (possibly
the approach taken by Perkins and Precup (2003) may provide a part of the answer). We
do know that e-greedification may sometimes result in an inferior policy, as policies may
chatter among good policies rather than converge (Gordon, 1996a). This is an area with
multiple open theoretical questions.
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10.5 Differential Semi-gradient n-step Sarsa

In order to generalize to n-step bootstrapping, we need an n-step version of the TD error.
We begin by generalizing the n-step return (7.4) to its differential form, with function
approximation:

Gitqn = Rt+1_Rt+1 + Rt+2_Rt+2 + "'+Rt+n_Rt+n + G(St4ns Atgns Wign—1),
(10.14)

where R is an estimate of r(7), n > 1, and t +n < T. If t + n > T, then we define
Gi.t4n = Gy as usual. The n-step TD error is then

(St = Gt:t+n — qA(St7 At, W)7 (1015)

after which we can apply our usual semi-gradient Sarsa update (10.12). Pseudocode for
the complete algorithm is given in the box.

Differential semi-gradient n-step Sarsa for estimating ¢ = ¢, or ¢.

Input: a differentiable function §: 8 x A x R? — R, a policy 7

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Initialize average-reward estimate R € R arbitrarily (e.g., R = 0)

Algorithm parameters: step size o, 5 > 0, a positive integer n

All store and access operations (S¢, A¢, and R;) can take their index mod n + 1

Initialize and store Sy and Ag
Loop for each step, t =0,1,2,...:
Take action A;
Observe and store the next reward as R;;1 and the next state as Sy41
Select and store an action A1 ~ 7(+|Siy1), or e-greedy wrt G(Siy1,, W)
T+ t—n+1 (7 is the time whose estimate is being updated)
If 7> 0:
6_<_ Z_ZTJA(RZ’ — R) + 4(Sr+n, Arin, W) — §(Sr, Ar, W)
R+« R+ 6
W+ w+ adV§(Sr, A, w)

Ezercise 10.9 In the differential semi-gradient n-step Sarsa algorithm, the step-size
parameter on the average reward, 3, needs to be quite small so that R becomes a good
long-term estimate of the average reward. Unfortunately, R will then be biased by its
initial value for many steps, which may make learning inefficient. Alternatively, one could
use a sample average of the observed rewards for R. That would initially adapt rapidly
but in the long run would also adapt slowly. As the policy slowly changed, R would also
change; the potential for such long-term nonstationarity makes sample-average methods
ill-suited. In fact, the step-size parameter on the average reward is a perfect place to use
the unbiased constant-step-size trick from Exercise 2.7. Describe the specific changes
needed to the boxed algorithm for differential semi-gradient n-step Sarsa to use this
trick. |
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10.6 Summary

In this chapter we have extended the ideas of parameterized function approximation and
semi-gradient descent, introduced in the previous chapter, to control. The extension is
immediate for the episodic case, but for the continuing case we have to introduce a whole
new problem formulation based on maximizing the average reward setting per time step.
Surprisingly, the discounted formulation cannot be carried over to control in the presence
of approximations. In the approximate case most policies cannot be represented by a
value function. The arbitrary policies that remain need to be ranked, and the scalar
average reward r(m) provides an effective way to do this.

The average reward formulation involves new differential versions of value functions,
Bellman equations, and TD errors, but all of these parallel the old ones, and the
conceptual changes are small. There is also a new parallel set of differential algorithms
for the average-reward case.

Bibliographical and Historical Remarks

10.1  Semi-gradient Sarsa with function approximation was first explored by Rummery
and Niranjan (1994). Linear semi-gradient Sarsa with e-greedy action selection
does not converge in the usual sense, but does enter a bounded region near
the best solution (Gordon, 1996a, 2001). Precup and Perkins (2003) showed
convergence in a differentiable action selection setting. See also Perkins and
Pendrith (2002) and Melo, Meyn, and Ribeiro (2008). The mountain—car example
is based on a similar task studied by Moore (1990), but the exact form used here
is from Sutton (1996).

10.2  Episodic n-step semi-gradient Sarsa is based on the forward Sarsa(\) algorithm
of van Seijen (2016). The empirical results shown here are new to the second
edition of this text.

10.3  The average-reward formulation has been described for dynamic programming
(e.g., Puterman, 1994) and from the point of view of reinforcement learning (Ma-
hadevan, 1996; Tadepalli and Ok, 1994; Bertsekas and Tsitiklis, 1996; Tsitsiklis
and Van Roy, 1999). The algorithm described here is the on-policy analog of the
“R-learning” algorithm introduced by Schwartz (1993). The name R-learning was
probably meant to be the alphabetic successor to Q-learning, but we prefer to
think of it as a reference to the learning of differential or relative values. The
access-control queuing example was suggested by the work of Carlstrém and
Nordstrom (1997).

10.4  The recognition of the limitations of discounting as a formulation of the rein-
forcement learning problem with function approximation became apparent to
the authors shortly after the publication of the first edition of this text. Singh,
Jaakkola, and Jordan (1994) may have been the first to observe it in print.



Chapter 11

*Off-policy Methods with
Approximation

This book has treated on-policy and off-policy learning methods since Chapter 5 primarily
as two alternative ways of handling the conflict between exploitation and exploration
inherent in learning forms of generalized policy iteration. The two chapters preceding this
have treated the on-policy case with function approximation, and in this chapter we treat
the off -policy case with function approximation. The extension to function approximation
turns out to be significantly different and harder for off-policy learning than it is for
on-policy learning. The tabular off-policy methods developed in Chapters 6 and 7 readily
extend to semi-gradient algorithms, but these algorithms do not converge as robustly as
they do under on-policy training. In this chapter we explore the convergence problems,
take a closer look at the theory of linear function approximation, introduce a notion of
learnability, and then discuss new algorithms with stronger convergence guarantees for the
off-policy case. In the end we will have improved methods, but the theoretical results will
not be as strong, nor the empirical results as satisfying, as they are for on-policy learning.
Along the way, we will gain a deeper understanding of approximation in reinforcement
learning for on-policy learning as well as off-policy learning.

Recall that in off-policy learning we seek to learn a value function for a target policy
m, given data due to a different behavior policy b. In the prediction case, both policies
are static and given, and we seek to learn either state values ¥ = v, or action values
G =~ qr. In the control case, action values are learned, and both policies typically change
during learning—m being the greedy policy with respect to ¢, and b being something
more exploratory such as the e-greedy policy with respect to g.

The challenge of off-policy learning can be divided into two parts, one that arises in
the tabular case and one that arises only with function approximation. The first part
of the challenge has to do with the target of the update (not to be confused with the
target policy), and the second part has to do with the distribution of the updates. The
techniques related to importance sampling developed in Chapters 5 and 7 deal with
the first part; these may increase variance but are needed in all successful algorithms,

257
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tabular and approximate. The extension of these techniques to function approximation
are quickly dealt with in the first section of this chapter.

Something more is needed for the second part of the challenge of off-policy learning
with function approximation because the distribution of updates in the off-policy case is
not according to the on-policy distribution. The on-policy distribution is important to
the stability of semi-gradient methods. Two general approaches have been explored to
deal with this. One is to use importance sampling methods again, this time to warp the
update distribution back to the on-policy distribution, so that semi-gradient methods
are guaranteed to converge (in the linear case). The other is to develop true gradient
methods that do not rely on any special distribution for stability. We present methods
based on both approaches. This is a cutting-edge research area, and it is not clear which
of these approaches is most effective in practice.

11.1 Semi-gradient Methods

We begin by describing how the methods developed in earlier chapters for the off-
policy case extend readily to function approximation as semi-gradient methods. These
methods address the first part of the challenge of off-policy learning (changing the update
targets) but not the second part (changing the update distribution). Accordingly, these
methods may diverge in some cases, and in that sense are not sound, but still they
are often successfully used. Remember that these methods are guaranteed stable and
asymptotically unbiased for the tabular case, which corresponds to a special case of
function approximation. So it may still be possible to combine them with feature selection
methods in such a way that the combined system could be assured stable. In any event,
these methods are simple and thus a good place to start.

In Chapter 7 we described a variety of tabular off-policy algorithms. To convert them
to semi-gradient form, we simply replace the update to an array (V or Q) to an update
to a weight vector (w), using the approximate value function (v or §¢) and its gradient.
Many of these algorithms use the per-step importance sampling ratio:

. W(At|St)
Pt Pt:t b(Atlst) . (111)
For example, the one-step, state-value algorithm is semi-gradient off-policy TD(0), which
is just like the corresponding on-policy algorithm (page 203) except for the addition of

Pt
Wit = w; + aptﬁtVﬁ(St7wt), (112)

where §; is defined appropriately depending on whether the problem is episodic and
discounted, or continuing and undiscounted using average reward:

6t = Rt+1 + ’yﬁ(St+1,Wt) — @(St,wt), or (113)

6t = Rt+1 - Rt + ’LA)(SH_l,Wt) — ’lA}(St,Wt). (114)
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For action values, the one-step algorithm is semi-gradient Expected Sarsa:

Wit = Wy + aétV(j(St, At, Wt), with (115)
0y = Ryp1 + 727r(a|5t+1)(j(5t+1, a,wi) — (S, Ay, wy), or (episodic)
6t = Rt+1 — Rt + Z 7r(a|St+1)(j(St+1, a, Wt) — Q(St, At, Wt). (continuing)

Note that this algorithm does not use importance sampling. In the tabular case it is clear
that this is appropriate because the only sample action is A;, and in learning its value we
do not have to consider any other actions. With function approximation it is less clear
because we might want to weight different state—action pairs differently once they all
contribute to the same overall approximation. Proper resolution of this issue awaits a
more thorough understanding of the theory of function approximation in reinforcement
learning.

In the multi-step generalizations of these algorithms, both the state-value and action-
value algorithms involve importance sampling. For example, the n-step version of
semi-gradient Expected Sarsa is

Witn = Witn—1 1t QP41 Prin—1 [Gt:t+n - @(St, Ay, Wt+n71>] Vﬁ(st, Ay, Wt+n71)
(11.6)

with
Giitn = Rep1 + -+ 9" "Risn +7"4(St4n, Atn, Wign_1), or (episodic)

Gitin = Rey1 — Re + -+ + Riyn — Rivn—1 + G(St4n, Atn, Witn—1), (continuing)
where here we are being slightly informal in our treatment of the ends of episodes. In the
first equation, the pgs for k > T (where T is the last time step of the episode) should be
taken to be 1, and Gy.,, should be taken to be Gy if t +n > T.

Recall that we also presented in Chapter 7 an off-policy algorithm that does not involve
importance sampling at all: the n-step tree-backup algorithm. Here is its semi-gradient
version:

Witn = Wign_1 + o [Gt:t+n - Q(St, Ay, Wt+n—1)] V@(Sm Ay, Wt+n—1)a (11-7)
t+n—1 k
Gityn = q(St, Ar, Wi1) + Z Ok H y(Ai]Si), (11.8)
k=t i=t+1

with &; as defined at the top of this page for Expected Sarsa. We also defined in Chapter 7
an algorithm that unifies all action-value algorithms: n-step Q(c). We leave the semi-
gradient form of that algorithm, and also of the n-step state-value algorithm, as exercises
for the reader.

Ezercise 11.1 Convert the equation of n-step off-policy TD (7.9) to semi-gradient form.
Give accompanying definitions of the return for both the episodic and continuing cases. [

*Ezercise 11.2 Convert the equations of n-step Q(o) (7.11 and 7.17) to semi-gradient
form. Give definitions that cover both the episodic and continuing cases. |
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11.2 Examples of Off-policy Divergence

In this section we begin to discuss the second part of the challenge of off-policy learning
with function approximation—that the distribution of updates does not match the on-
policy distribution. We describe some instructive counterexamples to off-policy learning—
cases where semi-gradient and other simple algorithms are unstable and diverge.

To establish intuitions, it is best to consider first a very simple example. Suppose,
perhaps as part of a larger MDP, there are two states whose estimated values are of
the functional form w and 2w, where the parameter vector w consists of only a single
component w. This occurs under linear function approximation if the feature vectors
for the two states are each simple numbers (single-component vectors), in this case 1
and 2. In the first state, only one action is available, and it results deterministically in a
transition to the second state with a reward of 0:

—C

where the expressions inside the two circles indicate the two state’s values.

Suppose initially w = 10. The transition will then be from a state of estimated value
10 to a state of estimated value 20. It will look like a good transition, and w will be
increased to raise the first state’s estimated value. If v is nearly 1, then the TD error will
be nearly 10, and, if @ = 0.1, then w will be increased to nearly 11 in trying to reduce the
TD error. However, the second state’s estimated value will also be increased, to nearly
22. If the transition occurs again, then it will be from a state of estimated value ~11 to
a state of estimated value ~22, for a TD error of ~11—larger, not smaller, than before.
It will look even more like the first state is undervalued, and its value will be increased
again, this time to ~12.1. This looks bad, and in fact with further updates w will diverge
to infinity.

To see this definitively we have to look more carefully at the sequence of updates. The
TD error on a transition between the two states is

6t = Rt+1 + ’ylA)(St+1,Wt) — @(St,wt) = 0 + 72111,5 — Wt = (2’)/ — 1)wt,
and the off-policy semi-gradient TD(0) update (from (11.2)) is
W41 = Wy + aptétVf)(St,wt) = W¢ + a - 1- (2’}/ — l)wt -1 = (1 + 06(2’}/ — 1))’LUt

Note that the importance sampling ratio, p;, is 1 on this transition because there is
only one action available from the first state, so its probabilities of being taken under
the target and behavior policies must both be 1. In the final update above, the new
parameter is the old parameter times a scalar constant, 1 + «(2y — 1). If this constant is
greater than 1, then the system is unstable and w will go to positive or negative infinity
depending on its initial value. Here this constant is greater than 1 whenever v > 0.5.
Note that stability does not depend on the specific step size, as long as o > 0. Smaller or
larger step sizes would affect the rate at which w goes to infinity, but not whether it goes
there or not.

Key to this example is that the one transition occurs repeatedly without w being
updated on other transitions. This is possible under off-policy training because the
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behavior policy might select actions on those other transitions which the target policy
never would. For these transitions, p; would be zero and no update would be made.
Under on-policy training, however, p; is always one. Each time there is a transition from
the w state to the 2w state, increasing w, there would also have to be a transition out
of the 2w state. That transition would reduce w, unless it were to a state whose value
was higher (because v < 1) than 2w, and then that state would have to be followed by a
state of even higher value, or else again w would be reduced. Each state can support the
one before only by creating a higher expectation. Eventually the piper must be paid. In
the on-policy case the promise of future reward must be kept and the system is kept in
check. But in the off-policy case, a promise can be made and then, after taking an action
that the target policy never would, forgotten and forgiven.

This simple example communicates much of the reason why off-policy training can lead
to divergence, but it is not completely convincing because it is not complete—it is just a
fragment of a complete MDP. Can there really be a complete system with instability? A
simple complete example of divergence is Baird’s counterexample. Consider the episodic
seven-state, two-action MDP shown in Figure 11.1. The dashed action takes the system
to one of the six upper states with equal probability, whereas the solid action takes the
system to the seventh state. The behavior policy b selects the dashed and solid actions
with probabilities g and %, so that the next-state distribution under it is uniform (the
same for all nonterminal states), which is also the starting distribution for each episode.
The target policy 7 always takes the solid action, and so the on-policy distribution (for )
is concentrated in the seventh state. The reward is zero on all transitions. The discount
rate is v = 0.99.

Consider estimating the state-value under the linear parameterization indicated by
the expression shown in each state circle. For example, the estimated value of the
leftmost state is 2w; +ws, where the subscript corresponds to the component of the

-7 T _f ______ f ______ FooT FooT )
’/’ H | | ' H '
h A
i
I
1
1
\
\
\ m(solid|-) = 1
\
‘\\ b(dashed|-) = 6/7
\ b(solid|-) = 1/7
\
\ T v =0.99
\\\ ///,

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action usually
results in the seventh state, and the dashed action usually results in one of the other six states,
each with equal probability. The reward is always zero.
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overall weight vector w € R®; this corresponds to a feature vector for the first state
being x(1) = (2,0,0,0,0,0,0,1)". The reward is zero on all transitions, so the true value
function is v, (s) = 0, for all s, which can be exactly approximated if w = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {x(s) : s € 8}, is
a linearly independent set. In all these ways this task seems a favorable case for linear
function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2 (left). The instability occurs for any positive step
size, no matter how small. In fact, it even occurs if an expected update is done as in
dynamic programming (DP), as shown in Figure 11.2 (right). That is, if the weight
vector, wg, is updated for all states at the same time in a semi-gradient way, using the
DP (expectation-based) target:

Wit = Wi + % > (EalRess +70(Sus1,we) | Si=s] = o(s.ws) ) Vo(s,w). (11.9)

In this case, there is no randomness and no asynchrony, just as in a classical DP update.
The method is conventional except in its use of semi-gradient function approximation.
Yet still the system is unstable.

If we alter just the distribution of DP updates in Baird’s counterexample, from the
uniform distribution to the on-policy distribution (which generally requires asynchronous
updating), then convergence is guaranteed to a solution with error bounded by (9.14).
This example is striking because the TD and DP methods used are arguably the simplest

Semi-gradient Off-policy TD Semi-gradient DP

w1— We

Steps

Sweeps

Figure 11.2: Demonstration of instability on Baird’s counterexample. Shown are the evolution
of the components of the parameter vector w of the two semi-gradient algorithms. The step size
was a = 0.01, and the initial weights were w = (1,1,1,1,1,1,10,1) .
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and best-understood bootstrapping methods, and the linear, semi-descent method used is
arguably the simplest and best-understood kind of function approximation. The example
shows that even the simplest combination of bootstrapping and function approximation
can be unstable if the updates are not done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence guarantees
of all control methods. Considerable effort has gone into trying to find a remedy to
this problem or to obtain some weaker, but still workable, guarantee. For example, it
may be possible to guarantee convergence of Q-learning as long as the behavior policy is
sufficiently close to the target policy, for example, when it is the e-greedy policy. To the
best of our knowledge, Q-learning has never been found to diverge in this case, but there
has been no theoretical analysis. In the rest of this section we present several other ideas
that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on each
iteration, as in Baird’s counterexample, we actually change the value function all the way
to the best, least-squares approximation. Would this solve the instability problem? Of
course it would if the feature vectors, {x(s) : s € 8}, formed a linearly independent set,
as they do in Baird’s counterexample, because then exact approximation is possible on
each iteration and the method reduces to standard tabular DP. But of course the point
here is to consider the case when an exact solution is not possible. In this case stability
is not guaranteed even when forming the best approximation at each iteration, as shown
in the example.

Example 11.1: Tsitsiklis and Van Roy’s Counterexample This example shows
that linear function approximation would not work with DP even if the least-squares
solution was found at each step. The counterexample is formed

by extending the w-to-2w example (from earlier in this section) 1—¢
with a terminal state, as shown to the right. As before, the

estimated value of the first state is w, and the estimated value

of the second state is 2w. The reward is zero on all transitions, ( )

so the true values are zero at both states, which is exactly
representable with w = 0. If we set w41 at each step so

as to minimize the VE between the estimated value and the
expected one-step return, then we have D

Wyl = arggf@in Z(@(s,w) — Er[Ris1 + 70(Se1,wi) | Se = S])2
w s€8
= argrﬁin (w— 72wk)2 + (2w —(1- 5)72wk)2
we
_ ¢ _5457%, (11.10)
The sequence {wy,} diverges when vy > 2= and wg # 0. [ ]
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Another way to try to prevent instability is to use special methods for function
approximation. In particular, stability is guaranteed for function approximation methods
that do not extrapolate from the observed targets. These methods, called averagers,
include nearest neighbor methods and locally weighted regression, but not popular
methods such as tile coding and artificial neural networks (ANNs).

Ezercise 11.3 (programming) Apply one-step semi-gradient Q-learning to Baird’s coun-
terexample and show empirically that its weights diverge. O

11.3 The Deadly Triad

Our discussion so far can be summarized by saying that the danger of instability and
divergence arises whenever we combine all of the following three elements, making up
what we call the deadly triad:

Function approximation A powerful, scalable way of generalizing from a state space
much larger than the memory and computational resources (e.g., linear function
approximation or ANNS).

Bootstrapping Update targets that include existing estimates (as in dynamic pro-
gramming or TD methods) rather than relying exclusively on actual rewards and
complete returns (as in MC methods).

Off-policy training Training on a distribution of transitions other than that produced
by the target policy. Sweeping through the state space and updating all states
uniformly, as in dynamic programming, does not respect the target policy and is
an example of off-policy training.

In particular, note that the danger is not due to control or to generalized policy iteration.
Those cases are more complex to analyze, but the instability arises in the simpler prediction
case whenever it includes all three elements of the deadly triad. The danger is also not
due to learning or to uncertainties about the environment, because it occurs just as
strongly in planning methods, such as dynamic programming, in which the environment
is completely known.

If any two elements of the deadly triad are present, but not all three, then instability
can be avoided. It is natural, then, to go through the three and see if there is any one
that can be given up.

Of the three, function approximation most clearly cannot be given up. We need
methods that scale to large problems and to great expressive power. We need at least
linear function approximation with many features and parameters. State aggregation or
nonparametric methods whose complexity grows with data are too weak or too expensive.
Least-squares methods such as LSTD are of quadratic complexity and are therefore too
expensive for large problems.

Doing without bootstrapping is possible, at the cost of computational and data efficiency.
Perhaps most important are the losses in computational efficiency. Monte Carlo (non-
bootstrapping) methods require memory to save everything that happens between making
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each prediction and obtaining the final return, and all their computation is done once the
final return is obtained. The cost of these computational issues is not apparent on serial
von Neumann computers, but would be on specialized hardware. With bootstrapping and
eligibility traces (Chapter 12), data can be dealt with when and where it is generated,
then need never be used again. The savings in communication and memory made possible
by bootstrapping are great.

The losses in data efficiency by giving up bootstrapping are also significant. We
have seen this repeatedly, such as in Chapters 7 (Figure 7.2) and 9 (Figure 9.2), where
some degree of bootstrapping performed much better than Monte Carlo methods on
the random-walk prediction task, and in Chapter 10 where the same was seen on the
Mountain-Car control task (Figure 10.4). Many other problems show much faster learning
with bootstrapping (e.g., see Figure 12.14). Bootstrapping often results in faster learning
because it allows learning to take advantage of the state property, the ability to recognize
a state upon returning to it. On the other hand, bootstrapping can impair learning on
problems where the state representation is poor and causes poor generalization (e.g.,
this seems to be the case on Tetris, see Simgek, Algérta, and Kothiyal, 2016). A poor
state representation can also result in bias; this is the reason for the poorer bound on
the asymptotic approximation quality of bootstrapping methods (Equation 9.14). On
balance, the ability to bootstrap has to be considered extremely valuable. One may
sometimes choose not to use it by selecting long n-step updates (or a large bootstrapping
parameter, A = 1; see Chapter 12) but often bootstrapping greatly increases efficiency. It
is an ability that we would very much like to keep in our toolkit.

Finally, there is off-policy learning; can we give that up? On-policy methods are often
adequate. For model-free reinforcement learning, one can simply use Sarsa rather than
Q-learning. Off-policy methods free behavior from the target policy. This could be
considered an appealing convenience but not a necessity. However, off-policy learning
1s essential to other anticipated use cases, cases that we have not yet mentioned in this
book but may be important to the larger goal of creating a powerful intelligent agent.

In these use cases, the agent learns not just a single value function and single policy,
but large numbers of them in parallel. There is extensive psychological evidence that
people and animals learn to predict many different sensory events, not just rewards. We
can be surprised by unusual events, and correct our predictions about them, even if
they are of neutral valence (neither good nor bad). This kind of prediction presumably
underlies predictive models of the world such as are used in planning. We predict what
we will see after eye movements, how long it will take to walk home, the probability of
making a jump shot in basketball, and the satisfaction we will get from taking on a new
project. In all these cases, the events we would like to predict depend on our acting in
a certain way. To learn them all, in parallel, requires learning from the one stream of
experience. There are many target policies, and thus the one behavior policy cannot
equal all of them. Yet parallel learning is conceptually possible because the behavior
policy may overlap in part with many of the target policies. To take full advantage of
this requires off-policy learning.



266 Chapter 11: Off-policy Methods with Approxzimation

11.4 Linear Value-function Geometry

To better understand the stability challenge of off-policy learning, it is helpful to think
about value function approximation more abstractly and independently of how learning
is done. We can imagine the space of all possible state-value functions—all functions
from states to real numbers v : § — R. Most of these value functions do not correspond
to any policy. More important for our purposes is that most are not representable by the
function approximator, which by design has far fewer parameters than there are states.

Given an enumeration of the state space 8 = {s1, s2,..., ||}, any value function v
corresponds to a vector listing the value of each state in order [v(s1), v(s2),...,v(s)s))] -
This vector representation of a value function has as many components as there are
states. In most cases where we want to use function approximation, this would be far
too many components to represent the vector explicitly. Nevertheless, the idea of this
vector is conceptually useful. In the following, we treat a value function and its vector
representation interchangeably.

To develop intuitions, consider the case with three states 8 = {s1, 2,53} and two
parameters w = (w1, wz) . We can then view all value functions/vectors as points in
a three-dimensional space. The parameters provide an alternative coordinate system
over a two-dimensional subspace. Any weight vector w = (wy,ws)' is a point in the
two-dimensional subspace and thus also a complete value function vy, that assigns values
to all three states. With general function approximation the relationship between the
full space and the subspace of representable functions could be complex, but in the case
of linear value-function approximation the subspace is a simple plane, as suggested by
Figure 11.3.

Now consider a single fixed policy w. We assume that its true value function, v, is too
complex to be represented exactly as an approximation. Thus v, is not in the subspace;
in the figure it is depicted as being above the planar subspace of representable functions.

If v, cannot be represented exactly, what representable value function is closest to
it? This turns out to be a subtle question with multiple answers. To begin, we need
a measure of the distance between two value functions. Given two value functions v
and v9, we can talk about the vector difference between them, v = v1 — vo. If v is small,
then the two value functions are close to each other. But how are we to measure the size
of this difference vector? The conventional Euclidean norm is not appropriate because,
as discussed in Section 9.2, some states are more important than others because they
occur more frequently or because we are more interested in them (Section 9.11). As
in Section 9.2, let us use the distribution p : 8§ — [0, 1] to specify the degree to which
we care about different states being accurately valued (often taken to be the on-policy
distribution). We can then define the distance between value functions using the norm

vl = uls)o(s)>. (11.11)

sES

Note that the VE from Section 9.2 can be written simply using this norm as VE(w) =
lvw — U”Hi' For any value function v, the operation of finding its closest value function
in the subspace of representable value functions is a projection operation. We define a
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Figure 11.3: The geometry of linear value-function approximation. Shown is the three-
dimensional space of all value functions over three states, while shown as a plane is the subspace of
all value functions representable by a linear function approximator with parameter w = (w1, wg)T
The true value function v is in the larger space and can be projected down (into the subspace,
using a projection operator II) to its best approximation in the value error (VE) sense. The
best approximators in the Bellman error (BE), projected Bellman error (PBE), and temporal
difference error (TDE) senses are all potentially different and are shown in the lower right. (VE,
BE, and PBE are all treated as the corresponding vectors in this figure.) The Bellman operator
takes a value function in the plane to one outside, which can then be projected back. If you
iteratively applied the Bellman operator outside the space (shown in gray above) you would
reach the true value function, as in conventional dynamic programming. If instead you kept
projecting back into the subspace at each step, as in the lower step shown in gray, then the fixed
point would be the point of vector-zero PBE.

projection operator II that takes an arbitrary value function to the representable function
that is closest in our norm:

ITv = vy, where w = argmin |jv — vw||i . (11.12)
weER?

The representable value function that is closest to the true value function v, is thus its
projection, ITv,, as suggested in Figure 11.3. This is the solution asymptotically found
by Monte Carlo methods, albeit often very slowly. The projection operation is discussed
more fully in the box on the next page.

TD methods find different solutions. To understand their rationale, recall that the
Bellman equation for value function v, is

v (8) = Zﬁ(a\s) Zp(s’,ﬂs, a) [r +~yva(s")], for all s € 8. (11.13)

a s’'r
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The projection matrix

For a linear function approximator, the projection operation is linear, which implies
that it can be represented as an [8| X |§| matrix:

=X (X'DX) XD, (11.14)

where, as in Section 9.4, D denotes the [8| x |8| diagonal matrix with the u(s)
on the diagonal, and X denotes the |§| x d matrix whose rows are the feature
vectors x(s) T, one for each state s. If the inverse in (11.14) does not exist, then the
pseudoinverse is substituted. Using these matrices, the squared norm of a vector
can be written

[v]|? = v" Do, (11.15)
and the approximate linear value function can be written

Vw = XW. (11.16)

The true value function v, is the only value function that solves (11.13) exactly. If an
approximate value function vy, were substituted for v, the difference between the right
and left sides of the modified equation could be used as a measure of how far off vy, is
from v,. We call this the Bellman error at state s:

Suls) = | S mals) S p(s/ rls, @) I+ yow(s)] | = vuls) (11.17)

a s’

= Ew[Rt—i-l + 'YUW(StJ,-l) — Uw(St) | St = S,At ~ 71'] y (1118)

which shows clearly the relationship of the Bellman error to the TD error (11.3). The
Bellman error is the expectation of the TD error.

The vector of all the Bellman errors, at all states, 6y € RISI, is called the Bellman
error vector (shown as BE in Figure 11.3). The overall size of this vector, in the norm, is
an overall measure of the error in the value function, called the Mean Squared Bellman
Error:

BE(w) = ||| - (11.19)

It is not possible in general to reduce the BE to zero (at which point vy = v, ), but for
linear function approximation there is a unique value of w for which the BE is minimized.
This point in the representable-function subspace (labeled min BE in Figure 11.3) is
different in general from that which minimizes the VE (shown as ITv, ). Methods that
seek to minimize the BE are discussed in the next two sections.

The Bellman error vector is shown in Figure 11.3 as the result of applying the Bellman
operator By : RISI — RIS| to the approximate value function. The Bellman operator is
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defined by

(Bav)(s) = 3 w(als) S p(s/, s, a) [r + yo(s)] (11.20)

a s’ r

forall s € § and v : § — R. The Bellman error vector for v can be written dyw = BrUw —Us.

If the Bellman operator is applied to a value function in the representable subspace,
then, in general, it will produce a new value function that is outside the subspace, as
suggested in the figure. In dynamic programming (without function approximation), this
operator is applied repeatedly to the points outside the representable space, as suggested
by the gray arrows in the top of Figure 11.3. Eventually that process converges to the
true value function v, the only fixed point for the Bellman operator, the only value
function for which

Uy = Brug, (11.21)

which is just another way of writing the Bellman equation for 7 (11.13).

With function approximation, however, the intermediate value functions lying outside
the subspace cannot be represented. The gray arrows in the upper part of Figure 11.3
cannot be followed because after the first update (dark line) the value function must
be projected back into something representable. The next iteration then begins within
the subspace; the value function is again taken outside of the subspace by the Bellman
operator and then mapped back by the projection operator, as suggested by the lower
gray arrow and line. Following these arrows is a DP-like process with approximation.

In this case we are interested in the projection of the Bellman error vector back into
the representable space. This is the projected Bellman error vector HSUW, shown in
Figure 11.3 as PBE. The size of this vector, in the norm, is another measure of error in
the approximate value function. For any approximate value function v, we define the
Mean Square Projected Bellman Error, denoted PBE, as

PBE(w) = |[13w " (11.22)

With linear function approximation there always exists an approximate value function
(within the subspace) with zero PBE; this is the TD fixed point, wrp, introduced in
Section 9.4. As we have seen, this point is not always stable under semi-gradient TD
methods and off-policy training. As shown in the figure, this value function is generally
different from those minimizing VE or BE. Methods that are guaranteed to converge to
it are discussed in Sections 11.7 and 11.8.

11.5 Gradient Descent in the Bellman Error

Armed with a better understanding of value function approximation and its various
objectives, we return now to the challenge of stability in off-policy learning. We would
like to apply the approach of stochastic gradient descent (SGD, Section 9.3), in which
updates are made that in expectation are equal to the negative gradient of an objective
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function. These methods always go downhill (in expectation) in the objective and because
of this are typically stable with excellent convergence properties. Among the algorithms
investigated so far in this book, only the Monte Carlo methods are true SGD methods.
These methods converge robustly under both on-policy and off-policy training as well
as for general nonlinear (differentiable) function approximators, though they are often
slower than semi-gradient methods with bootstrapping, which are not SGD methods.
Semi-gradient methods may diverge under off-policy training, as we have seen earlier in
this chapter, and under contrived cases of nonlinear function approximation (Tsitsiklis
and Van Roy, 1997). With a true SGD method such divergence would not be possible.

The appeal of SGD is so strong that great effort has gone into finding a practical
way of harnessing it for reinforcement learning. The starting place of all such efforts is
the choice of an error or objective function to optimize. In this and the next section
we explore the origins and limits of the most popular proposed objective function, that
based on the Bellman error introduced in the previous section. Although this has been a
popular and influential approach, the conclusion that we reach here is that it is a misstep
and yields no good learning algorithms. On the other hand, this approach fails in an
interesting way that offers insight into what might constitute a good approach.

To begin, let us consider not the Bellman error, but something more immediate
and naive. Temporal difference learning is driven by the TD error. Why not take the
minimization of the expected square of the TD error as the objective? In the general
function-approximation case, the one-step TD error with discounting is

0 = Ryp1 +y0(Stq1, W) — 0(Se,wy).

A possible objective function then is what one might call the Mean Squared TD Error:

TDE Z,u t | Stfs At'\/ﬂ']
s€8
—Z,u pté |St—s Atwb}
s€8
= Eb[ptéﬂ . (if p is the distribution encountered under b)

The last equation is of the form needed for SGD; it gives the objective as an expectation
that can be sampled from experience (remember the experience is due to the behavior
policy b). Thus, following the standard SGD approach, one can derive the per-step update
based on a sample of this expected value:

1
Wiyl = W — iaV(Ptfs?)
= W — aptﬁtV(St
= W¢ + Ozpt(St (VQA}(ShWt) — ’}/V’IA)(St+1,Wt)), (1123)

which you will recognize as the same as the semi-gradient TD algorithm (11.2) except for
the additional final term. This term completes the gradient and makes this a true SGD
algorithm with excellent convergence guarantees. Let us call this algorithm the naive
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residual-gradient algorithm (after Baird, 1995). Although the naive residual-gradient
algorithm converges robustly, it does not necessarily converge to a desirable place.

Example 11.2: A-split example,

showing the naiveté of the naive residual-gradient algorithm

Consider the three-state episodic MRP shown to the right.
Episodes begin in state A and then ‘split’ stochastically, half
the time going to B (and then invariably going on to terminate
with a reward of 1) and half the time going to state C (and
then invariably terminating with a reward of zero). Reward for
the first transition, out of A, is always zero whichever way the
episode goes. As this is an episodic problem, we can take 7 to
be 1. We also assume on-policy training, so that p; is always
1, and tabular function approximation, so that the learning algorithms are free to
give arbitrary, independent values to all three states. Thus, this should be an easy
problem.

What should the values be? From A, half the time the return is 1, and half the
time the return is 0; A should have value % From B the return is always 1, so its
value should be 1, and similarly from C the return is always 0, so its value should
be 0. These are the true values and, as this is a tabular problem, all the methods
presented previously converge to them exactly.

©—

However, the naive residual-gradient algorithm finds different values for B and
C. It converges with B having a value of % and C having a value of 71; (A converges
correctly to %) These are in fact the values that minimize the TDE.

Let us compute the TDE for these values. The first transition of each episode is
either up from A’s % to B’s %, a change of i, or down from A’s % to C’s }1, a change
of —%L. Because the reward is zero on these transitions, and v = 1, these changes are
the TD errors, and thus the squared TD error is always lﬁ on the first transition.
The second transition is similar; it is either up from B’s 3 to a reward of 1 (and a
terminal state of value 0), or down from C’s } to a reward of 0 (again with a terminal
state of value 0). Thus, the TD error is always j:%, for a squared error of 1—16 on the

second step. Thus, for this set of values, the TDE on both steps is %.

Now let’s compute the TDE for the true values (B at 1, C at 0, and A at %) In this
case the first transition is either from % up to 1, at B, or from % down to 0, at C; in
either case the absolute error is % and the squared error is %1. The second transition
has zero error because the starting value, either 1 or 0 depending on whether the

transition is from B or C, always exactly matches the immediate reward and return.
Thus the squared TD error is % on the first transition and 0 on the second, for a
mean reward over the two transitions of %. As % is bigger that 1—16, this solution is

worse according to the TDE. On this simple problem, the true values do not have
the smallest TDE.
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A tabular representation is used in the A-split example, so the true state values can
be exactly represented, yet the naive residual-gradient algorithm finds different values,
and these values have lower TDE than do the true values. Minimizing the TDE is naive;
by penalizing all TD errors it achieves something more like temporal smoothing than
accurate prediction.

A better idea would seem to be minimizing the Bellman error. If the exact values
are learned, the Bellman error is zero everywhere. Thus, a Bellman-error-minimizing
algorithm should have no trouble with the A-split example. We cannot expect to achieve
zero Bellman error in general, as it would involve finding the true value function, which
we presume is outside the space of representable value functions. But getting close to
this ideal is a natural-seeming goal. As we have seen, the Bellman error is also closely
related to the TD error. The Bellman error for a state is the expected TD error in that
state. So let’s repeat the derivation above with the expected TD error (all expectations
here are implicitly conditional on S;):

1
Wii1 = Wy — §aV(Ew[6t]2)

1
=W; — 504V(Eb[ﬂt5t]2)
= Wi — OéEb[Pt5t] va[ptdt]
=w; — aBy[p(Rig1 +70(Si1,w) — 0(St,w))| Eelp V(]

=w; +« [Eb[pt(RHl + 'y@(StH,W))] — @(St,w)} {Vﬁ(st,w) — ’yEb[ptVﬁ(StH,W)H .

This update and various ways of sampling it are referred to as the residual-gradient
algorithm. If you simply used the sample values in all the expectations, then the equation
above reduces almost exactly to (11.23), the naive residual-gradient algorithm.! But
this is naive, because the equation above involves the next state, Si;1, appearing in two
expectations that are multiplied together. To get an unbiased sample of the product,
two independent samples of the next state are required, but during normal interaction
with an external environment only one is obtained. One expectation or the other can be
sampled, but not both.

There are two ways to make the residual-gradient algorithm work. One is in the case
of deterministic environments. If the transition to the next state is deterministic, then
the two samples will necessarily be the same, and the naive algorithm is valid. The
other way is to obtain two independent samples of the next state, Siy1, from S, one for
the first expectation and another for the second expectation. In real interaction with
an environment, this would not seem possible, but when interacting with a simulated
environment, it is. One simply rolls back to the previous state and obtains an alternate
next state before proceeding forward from the first next state. In either of these cases the
residual-gradient algorithm is guaranteed to converge to a minimum of the BE under the
usual conditions on the step-size parameter. As a true SGD method, this convergence is

1For state values there remains a small difference in the treatment of the importance sampling ratio
p¢. In the analagous action-value case (which is the most important case for control algorithms), the
residual-gradient algorithm would reduce exactly to the naive version.
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robust, applying to both linear and nonlinear function approximators. In the linear case,
convergence is always to the unique w that minimizes the BE.

However, there remain at least three ways in which the convergence of the residual-
gradient method is unsatisfactory. The first of these is that empirically it is slow, much
slower that semi-gradient methods. Indeed, proponents of this method have proposed
increasing its speed by combining it with faster semi-gradient methods initially, then
gradually switching over to residual gradient for the convergence guarantee (Baird and
Moore, 1999). The second way in which the residual-gradient algorithm is unsatisfactory
is that it still seems to converge to the wrong values. It does get the right values in all
tabular cases, such as the A-split example, as for those an exact solution to the Bellman

Example 11.3: A-presplit example, a counterexample for the BE

Consider the three-state episodic MRP shown to the
right: Episodes start in either Al or A2, with equal

probability. These two states look exactly the same to

the function approximator, like a single state A whose :
feature representation is distinct from and unrelated to A

the feature representation of the other two states, B and . . . — 0
\\ // 0

C, which are also distinct from each other. Specifically,

the parameter of the function approximator has three

components, one giving the value of state B, one giving the value of state C, and one
giving the value of both states Al and A2. Other than the selection of the initial
state, the system is deterministic. If it starts in Al, then it transitions to B with a
reward of 0 and then on to termination with a reward of 1. If it starts in A2, then it
transitions to C, and then to termination, with both rewards zero.

To a learning algorithm, seeing only the features, the system looks identical to
the A-split example. The system seems to always start in A, followed by either
B or C with equal probability, and then terminating with a 1 or a 0 depending
deterministically on the previous state. As in the A-split example, the true values
of B and C are 1 and 0, and the best shared value of Al and A2 is %, by symmetry.

Because this problem appears externally identical to the A-split example, we
already know what values will be found by the algorithms. Semi-gradient TD
converges to the ideal values just mentioned, while the naive residual-gradient
algorithm converges to values of % and % for B and C respectively. All state
transitions are deterministic, so the non-naive residual-gradient algorithm will also
converge to these values (it is the same algorithm in this case). It follows then that
this ‘naive’ solution must also be the one that minimizes the BE, and so it is. On a
deterministic problem, the Bellman errors and TD errors are all the same, so the
BE is always the same as the TDE. Optimizing the BE on this example gives rise to
the same failure mode as with the naive residual-gradient algorithm on the A-split
example.
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equation is possible. But if we examine examples with genuine function approximation,
then the residual-gradient algorithm, and indeed the BE objective, seem to find the
wrong value functions. One of the most telling such examples is the variation on the
A-split example known as the A-presplit example, shown on the preceding page, in which
the residual-gradient algorithm finds the same poor solution as its naive version. This
example shows intuitively that minimizing the BE (which the residual-gradient algorithm
surely does) may not be a desirable goal.

The third way in which the convergence of the residual-gradient algorithm is not
satisfactory is explained in the next section. Like the second way, the third way is also
a problem with the BE objective itself rather than with any particular algorithm for
achieving it.

11.6 The Bellman Error is Not Learnable

The concept of learnability that we introduce in this section is different from that
commonly used in machine learning. There, a hypothesis is said to be “learnable” if
it is efficiently learnable, meaning that it can be learned within a polynomial rather
than an exponential number of examples. Here we use the term in a more basic way,
to mean learnable at all, with any amount of experience. It turns out many quantities
of apparent interest in reinforcement learning cannot be learned even from an infinite
amount of experiential data. These quantities are well defined and can be computed
given knowledge of the internal structure of the environment, but cannot be computed
or estimated from the observed sequence of feature vectors, actions, and rewards.? We
say that they are not learnable. It will turn out that the Bellman error objective (BE)
introduced in the last two sections is not learnable in this sense. That the Bellman error
objective cannot be learned from the observable data is probably the strongest reason
not to seek it.

To make the concept of learnability clear, let’s start with some simple examples.
Consider the two Markov reward processes® (MRPs) diagrammed below:

Where two edges leave a state, both transitions are assumed to occur with equal probability,
and the numbers indicate the reward received. All the states appear the same; they all
produce the same single-component feature vector x = 1 and have approximated value
w. Thus, the only varying part of the data trajectory is the reward sequence. The left
MRP stays in the same state and emits an endless stream of Os and 2s at random, each
with 0.5 probability. The right MRP, on every step, either stays in its current state or

2They would of course be estimated if the state sequence were observed rather than only the
corresponding feature vectors.

3All MRPs can be considered MDPs with a single action in all states; what we conclude about MRPs
here applies as well to MDPs.
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switches to the other, with equal probability. The reward is deterministic in this MRP,
always a 0 from one state and always a 2 from the other, but because the each state is
equally likely on each step, the observable data is again an endless stream of Os and 2s at
random, identical to that produced by the left MRP. (We can assume the right MRP
starts in one of two states at random with equal probability.) Thus, even given even
an infinite amount of data, it would not be possible to tell which of these two MRPs
was generating it. In particular, we could not tell if the MRP has one state or two, is
stochastic or deterministic. These things are not learnable.

This pair of MRPs also illustrates that the VE objective (9.1) is not learnable. If
~v = 0, then the true values of the three states (in both MRPs), left to right, are 1, 0,
and 2. Suppose w = 1. Then the VE is 0 for the left MRP and 1 for the right MRP.
Because the VE is different in the two problems, yet the data generated has the same
distribution, the VE cannot be learned. The VE is not a unique function of the data
distribution. And if it cannot be learned, then how could the VE possibly be useful as
an objective for learning?

If an objective cannot be learned, it does indeed draw its utility into question. In
the case of the VE, however, there is a way out. Note that the same solution, w = 1,
is optimal for both MRPs above (assuming p is the same for the two indistinguishable
states in the right MRP). Is this a coincidence, or could it be generally true that all
MDPs with the same data distribution also have the same optimal parameter vector? If
this is true—and we will show next that it is—then the VE remains a usable objective.
The VE is not learnable, but the parameter that optimizes it is!

To understand this, it is useful to bring in another natural objective function, this time
one that is clearly learnable. One error that is always observable is that between the value
estimate at each time and the return from that time. The Mean Square Return Error,
denoted RE, is the expectation, under u, of the square of this error. In the on-policy case
the RE can be written

RE(w) = E[(Gt - @(st,w))ﬂ
— VE(w) —HE[(Gt —vﬂ(St))2]. (11.24)

Thus, the two objectives are the same except for a variance term that does not depend on
the parameter vector. The two objectives must therefore have the same optimal parameter
value w*. The overall relationships are summarized in the left side of Figure 11.4.

*Evercise 11.4 Prove (11.24). Hint: Write the RE as an expectation over possible states
s of the expectation of the squared error given that S; = s. Then add and subtract the
true value of state s from the error (before squaring), grouping the subtracted true value
with the return and the added true value with the estimated value. Then, if you expand
the square, the most complex term will end up being zero, leaving you with (11.24). O

Now let us return to the BE. The BE is like the VE in that it can be computed from
knowledge of the MDP but is not learnable from data. But it is not like the VE in that its
minimum solution is not learnable. The box on the next page presents a counterexample—
two MRPs that generate the same data distribution but whose minimizing parameter
vector is different, proving that the optimal parameter vector is not a function of the



276 Chapter 11: Off-policy Methods with Approxzimation

Example 11.4: Counterexample to the learnability of the Bellman error

To show the full range of possibilities we need a slightly more complex pair of Markov
reward processes (MRPs) than those considered earlier. Consider the following two
MRPs:
-1
e
OEOW ;
0
0
Where two edges leave a state, both transitions are assumed to occur with equal
probability, and the numbers indicate the reward received. The MRP on the left has
two states that are represented distinctly. The MRP on the right has three states,
two of which, B and B’, appear the same and must be given the same approximate
value. Specifically, w has two components and the value of state A is given by the first
component and the value of B and B’ is given by the second. The second MRP has

been designed so that equal time is spent in all three states, so we can take u(s) = %,
for all s.

Note that the observable data distribution is identical for the two MRPs. In both
cases the agent will see single occurrences of A followed by a 0, then some number
of apparent Bs, each followed by a —1 except the last, which is followed by a 1, then
we start all over again with a single A and a 0, etc. All the statistical details are the
same as well; in both MRPs, the probability of a string of k Bs is 27%.

Now suppose w = 0. In the first MRP, this is an exact solution, and the BE is
zero. In the second MRP, this solution produces a squared error in both B and B’ of
1, such that BE = u(B)1 + p(B’)1 = 2. These two MRPs, which generate the same
data distribution, have different BEs; the BE is not learnable.

Moreover (and unlike the earlier example for the VE) the minimizing value of w
is different for the two MRPs. For the first MRP, w = 0 minimizes the BE for any
v. For the second MRP, the minimizing w is a complicated function of ~, but in
the limit, as v — 1, it is (—%, 0)". Thus the solution that minimizes BE cannot be
estimated from data alone; knowledge of the MRP beyond what is revealed in the
data is required. In this sense, it is impossible in principle to pursue the BE as an

objective for learning.

It may be surprising that in the second MRP the BE-minimizing value of A is so far
from zero. Recall that A has a dedicated weight and thus its value is unconstrained
by function approximation. A is followed by a reward of 0 and transition to a state
with a value of nearly 0, which suggests vy (A) should be 0; why is its optimal
value substantially negative rather than 07 The answer is that making vy (A) negative
reduces the error upon arriving in A from B. The reward on this deterministic transition
is 1, which implies that B should have a value 1 more than A. Because B’s value is
approximately zero, A’s value is driven toward —1. The BE-minimizing value of ~ —%
for A is a compromise between reducing the errors on leaving and on entering A.
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Figure 11.4: Causal relationships among the data distribution, MDPs, and various objectives.
Left, Monte Carlo objectives: Two different MDPs can produce the same data distribution
yet also produce different VEs, proving that the VE objective cannot be determined from data
and is not learnable. However, all such VEs must have the same optimal parameter vector, w*!
Moreover, this same w* can be determined from another objective, the RE, which 4s uniquely
determined from the data distribution. Thus w* and the RE are learnable even though the VEs
are not. Right, Bootstrapping objectives: Two different MDPs can produce the same data
distribution yet also produce different BEs and have different minimizing parameter vectors;
these are not learnable from the data distribution. The PBE and TDE objectives and their
(different) minima can be directly determined from data and thus are learnable.

data and thus cannot be learned from it. The other bootstrapping objectives that we
have considered, the PBE and TDE, can be determined from data (are learnable) and
determine optimal solutions that are in general different from each other and the BE
minimums. The general case is summarized in the right side of Figure 11.4.

Thus, the BE is not learnable; it cannot be estimated from feature vectors and other
observable data. This limits the BE to model-based settings. There can be no algorithm
that minimizes the BE without access to the underlying MDP states beyond the feature
vectors. The residual-gradient algorithm is only able to minimize BE because it is allowed
to double sample from the same state—mnot a state that has the same feature vector,
but one that is guaranteed to be the same underlying state. We can see now that there
is no way around this. Minimizing the BE requires some such access to the nominal,
underlying MDP. This is an important limitation of the BE beyond that identified in the
A-presplit example on page 273. All this directs more attention toward the PBE.
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11.7 Gradient-TD Methods

We now consider SGD methods for minimizing the PBE. As true SGD methods, these
Gradient-TD methods have robust convergence properties even under off-policy training
and nonlinear function approximation. Remember that in the linear case there is always
an exact solution, the TD fixed point wrp, at which the PBE is zero. This solution could
be found by least-squares methods (Section 9.8), but only by methods of quadratic O(d?)
complexity in the number of parameters. We seek instead an SGD method, which should
be O(d) and have robust convergence properties. Gradient-TD methods come close to
achieving these goals, at the cost of a rough doubling of computational complexity.

To derive an SGD method for the PBE (assuming linear function approximation) we
begin by expanding and rewriting the objective (11.22) in matrix terms:

PBE(w) = |13

= (II0y,) ' DITdy (from (11.15))
= 5] 11" DIId,,
— 5JDX(X'DX) XD, (11.25)

(using (11.14) and the identity II" DIl = DX (X"DX) ' X'D)
— (X'Dé,) " (XTDX) (X Dé.). (11.26)
The gradient with respect to w is
VPBE(w) = 2V[XDd,] (X"DX) ' (X Ddy).

To turn this into an SGD method, we have to sample something on every time step that
has this quantity as its expected value. Let us take p to be the distribution of states
visited under the behavior policy. All three of the factors above can then be written in
terms of expectations under this distribution. For example, the last factor can be written

X'Dé,, = ZM(S)X(S)gw(S) = E[pidx¢]

which is just the expectation of the semi-gradient TD(0) update (11.2). The first factor
is the transpose of the gradient of this update:

VE[p:dix,])" = E[p, V5, x/ ]
= ]E[ptV(RtJ,_l + ’YWTXt+1 - WTXt
= ]E[Pt(’YXtH - Xt)XtT] .

) x, ] (using episodic d;)

Finally, the middle factor is the inverse of the expected outer-product matrix of the
feature vectors:

X'DX = Z p(s)xex] = ]E[xtx:] .
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Substituting these expectations for the three factors in our expression for the gradient of
the PBE, we get

VPBE(w) = 2E [,ot('yXHl — xt)x;r] E[xth] ! E[p:dexy] . (11.27)

It might not be obvious that we have made any progress by writing the gradient in this
form. It is a product of three expressions and the first and last are not independent.
They both depend on the next feature vector x;y1; we cannot simply sample both of
these expectations and then multiply the samples. This would give us a biased estimate
of the gradient just as in the naive residual-gradient algorithm.

Another idea would be to estimate the three expectations separately and then combine
them to produce an unbiased estimate of the gradient. This would work, but would
require a lot of computational resources, particularly to store the first two expectations,
which are d x d matrices, and to compute the inverse of the second. This idea can be
improved. If two of the three expectations are estimated and stored, then the third could
be sampled and used in conjunction with the two stored quantities. For example, you
could store estimates of the second two quantities (using the increment inverse-updating
techniques in Section 9.8) and then sample the first expression. Unfortunately, the overall
algorithm would still be of quadratic complexity (of order O(d?)).

The idea of storing some estimates separately and then combining them with samples
is a good one and is also used in Gradient-TD methods. Gradient-TD methods estimate
and store the product of the second two factors in (11.27). These factors are a d x d
matrix and a d-vector, so their product is just a d-vector, like w itself. We denote this
second learned vector as v:

-1
v~ E[xx/) | Elpdix]. (11.28)

This form is familiar to students of linear supervised learning. It is the solution to a linear
least-squares problem that tries to approximate p;d; from the features. The standard
SGD method for incrementally finding the vector v that minimizes the expected squared
error (vTxt — ptét)2 is known as the Least Mean Square (LMS) rule (here augmented
with an importance sampling ratio):

Vir1 = Vi + Bpy (5t - V:Xt) X¢,

where 8 > 0 is another step-size parameter. We can use this method to effectively achieve
(11.28) with O(d) storage and per-step computation.

Given a stored estimate v; approximating (11.28), we can update our main parameter
vector w; using SGD methods based on (11.27). The simplest such rule is

1 _
Wil = Wy — iaVPBE(Wt) (the general SGD rule)
1 -1
=w; — 5&21[-3 [pt('thJrl — Xt)xﬂ E[th;r] E[p:dex4] (from (11.27))
-1
=w; + aE [pt(xt — 'ny_l)xtT] E[xtxj] E[p:dex¢] (11.29)
~ Wy + aE[py(x¢ — yxe41)%{ | ve (based on (11.28))
~ Wi+ apy (X — YXe1) X[ Vi (sampling)
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This algorithm is called GTD2. Note that if the final inner product (x; v;) is done first,
then the entire algorithm is of O(d) complexity.

A slightly better algorithm can be derived by doing a few more analytic steps before
substituting in v;. Continuing from (11.29):
Wit = Wi + ol [pt(Xt - ’YXt+1)XtT] E[XtXtT] - E[p:dex;]
=w;+a (]E [ptxtx;r] —~E [tht+1X;rj|) E[XtXT} ! E[p:drx¢]
=w; +a (]E [xtx;r] —~E [ptxH_lx:]) ]E[thT] ! E[p:dx:]
=W+ (E[tit5t] —E [pexer1x] | E[xex] ] E[Pt5txt])
~ wi + a (E[xeped] — VE[pexep1x] | ve) (based on (11.28))

~ Wi+ apy (tht — fyxt_thTvt) , (sampling)

which again is O(d) if the final product (x; v;) is done first. This algorithm is known as
either TD(0) with gradient correction (TDC) or, alternatively, as GTD(0).

Figure 11.5 shows a sample and the expected behavior of TDC on Baird’s counterex-
ample. As intended, the PBE falls to zero, but note that the individual components
of the parameter vector do not approach zero. In fact, these values are still far from

- Expected TDC

W1~ We

Ws
-2.34 8

0 1000 0 1000
Steps Sweeps

Figure 11.5: The behavior of the TDC algorithm on Baird’s counterexample. On the left is
shown a typical single run, and on the right is shown the expected behavior of this algorithm if
the updates are done synchronously (analogous to (11.9), except for the two TDC parameter
vectors). The step sizes were a = 0.005 and 8 = 0.05.
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an optimal solution, ©(s) = 0, for all s, for which w would have to be proportional to
(1,1,1,1,1,1,4,—2)T. After 1000 iterations we are still far from an optimal solution, as
we can see from the VE, which remains almost 2. The system is actually converging to
an optimal solution, but progress is extremely slow because the PBE is already so close
to zero.

GTD2 and TDC both involve two learning processes, a primary one for w and a
secondary one for v. The logic of the primary learning process relies on the secondary
learning process having finished, at least approximately, whereas the secondary learning
process proceeds without being influenced by the first. We call this sort of asymmetrical
dependence a cascade. In cascades we often assume that the secondary learning process
is proceeding faster and thus is always at its asymptotic value, ready and accurate to
assist the primary learning process. The convergence proofs for these methods often make
this assumption explicitly. These are called two-time-scale proofs. The fast time scale is
that of the secondary learning process, and the slower time scale is that of the primary
learning process. If « is the step size of the primary learning process, and 3 is the step
size of the secondary learning process, then these convergence proofs will typically require
that in the limit 8 — 0 and % — 0.

Gradient-TD methods are currently the most well understood and widely used stable
off-policy methods. There are extensions to action values and control (GQ, Maei et al.,
2010), to eligibility traces (GTD(\) and GQ(X), Maei, 2011; Maei and Sutton, 2010), and
to nonlinear function approximation (Maei et al., 2009). There have also been proposed
hybrid algorithms midway between semi-gradient TD and gradient TD (Hackman, 2012;
White and White, 2016). Hybrid-TD algorithms behave like Gradient-TD algorithms in
states where the target and behavior policies are very different, and behave like semi-
gradient algorithms in states where the target and behavior policies are the same. Finally,
the Gradient-TD idea has been combined with the ideas of proximal methods and control
variates to produce more efficient methods (Mahadevan et al., 2014; Du et al., 2017).

11.8 Emphatic-TD Methods

We turn now to the second major strategy that has been extensively explored for obtaining
a cheap and efficient off-policy learning method with function approximation. Recall
that linear semi-gradient TD methods are efficient and stable when trained under the
on-policy distribution, and that we showed in Section 9.4 that this has to do with the
positive definiteness of the matrix A (9.11)* and the match between the on-policy state
distribution p, and the state-transition probabilities p(s|s,a) under the target policy. In
off-policy learning, we reweight the state transitions using importance sampling so that
they become appropriate for learning about the target policy, but the state distribution
is still that of the behavior policy. There is a mismatch. A natural idea is to somehow
reweight the states, emphasizing some and de-emphasizing others, so as to return the
distribution of updates to the on-policy distribution. There would then be a match,
and stability and convergence would follow from existing results. This is the idea of

4In the off-policy case, the matrix A is generally defined as Eyp[x(s)E[x(St+1) | St =s, At ~7]].
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Emphatic-TD methods, first introduced for on-policy training in Section 9.11.

Actually, the notion of “the on-policy distribution” is not quite right, as there are many
on-policy distributions, and any one of these is sufficient to guarantee stability. Consider
an undiscounted episodic problem. The way episodes terminate is fully determined by the
transition probabilities, but there may be several different ways the episodes might begin.
However the episodes start, if all state transitions are due to the target policy, then the
state distribution that results is an on-policy distribution. You might start close to the
terminal state and visit only a few states with high probability before ending the episode.
Or you might start far away and pass through many states before terminating. Both are
on-policy distributions, and training on both with a linear semi-gradient method would
be guaranteed to be stable. However the process starts, an on-policy distribution results
as long as all states encountered are updated up until termination.

If there is discounting, it can be treated as partial or probabilistic termination for these
purposes. If v = 0.9, then we can consider that with probability 0.1 the process terminates
on every time step and then immediately restarts in the state that is transitioned to. A
discounted problem is one that is continually terminating and restarting with probability
1 —~ on every step. This way of thinking about discounting is an example of a more
general notion of pseudo termination—termination that does not affect the sequence of
state transitions, but does affect the learning process and the quantities being learned.
This kind of pseudo termination is important to off-policy learning because the restarting
is optional—remember we can start any way we want to—and the termination relieves
the need to keep including encountered states within the on-policy distribution. That is,
if we don’t consider the new states as restarts, then discounting quickly gives us a limited
on-policy distribution.

The one-step Emphatic-TD algorithm for learning episodic state values is defined by:

0t = Rip1 + y0(Seq1,We) — 0(S¢,wy),

W1 = Wy + aMp6,VO(Se,wy),
My =vpi 1My 1+ I,

with I;, the interest, being arbitrary and M, the emphasis, being initialized to M;_; = 0.
How does this algorithm perform on Baird’s counterexample? Figure 11.6 shows the
trajectory in expectation of the components of the parameter vector (for the case in
which I; =1, for all t). There are some oscillations but eventually everything converges
and the VE goes to zero. These trajectories are obtained by iteratively computing the
expectation of the parameter vector trajectory without any of the variance due to sampling
of transitions and rewards. We do not show the results of applying the Emphatic-TD
algorithm directly because its variance on Baird’s counterexample is so high that it is
nigh impossible to get consistent results in computational experiments. The algorithm
converges to the optimal solution in theory on this problem, but in practice it does not.
We turn to the topic of reducing the variance of all these algorithms in the next section.
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Sweeps 1000

Figure 11.6: The behavior of the one-step Emphatic-TD algorithm in expectation on Baird’s
counterexample. The step size was o = 0.03.

11.9 Reducing Variance

Off-policy learning is inherently of greater variance than on-policy learning. This is not
surprising; if you receive data less closely related to a policy, you should expect to learn
less about the policy’s values. In the extreme, one may be able to learn nothing. You
can’t expect to learn how to drive by cooking dinner, for example. Only if the target and
behavior policies are related, if they visit similar states and take similar actions, should
one be able to make significant progress in off-policy training.

On the other hand, any policy has many neighbors, many similar policies with con-
siderable overlap in states visited and actions chosen, and yet which are not identical.
The raison d’étre of off-policy learning is to enable generalization to this vast number
of related-but-not-identical policies. The problem remains of how to make the best use
of the experience. Now that we have some methods that are stable in expected value
(if the step sizes are set right), attention naturally turns to reducing the variance of the
estimates. There are many possible ideas, and we can just touch on a few of them in this
introductory text.

Why is controlling variance especially critical in off-policy methods based on importance
sampling? As we have seen, importance sampling often involves products of policy ratios.
The ratios are always one in expectation (5.13), but their actual values may be very high
or as low as zero. Successive ratios are uncorrelated, so their products are also always one
in expected value, but they can be of very high variance. Recall that these ratios multiply
the step size in SGD methods, so high variance means taking steps that vary greatly in
their sizes. This is problematic for SGD because of the occasional very large steps. They
must not be so large as to take the parameter to a part of the space with a very different
gradient. SGD methods rely on averaging over multiple steps to get a good sense of
the gradient, and if they make large moves from single samples they become unreliable.
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If the step-size parameter is set small enough to prevent this, then the expected step
can end up being very small, resulting in very slow learning. The notions of momentum
(Derthick, 1984), of Polyak-Ruppert averaging (Polyak, 1990; Ruppert, 1988; Polyak and
Juditsky, 1992), or further extensions of these ideas may significantly help. Methods for
adaptively setting separate step sizes for different components of the parameter vector
are also pertinent (e.g., Jacobs, 1988; Sutton, 1992b, c¢), as are the “importance weight
aware” updates of Karampatziakis and Langford (2010).

In Chapter 5 we saw how weighted importance sampling is significantly better behaved,
with lower variance updates, than ordinary importance sampling. However, adapting
weighted importance sampling to function approximation is challenging and can probably
only be done approximately with O(d) complexity (Mahmood and Sutton, 2015).

The Tree Backup algorithm (Section 7.5) shows that it is possible to perform some
off-policy learning without using importance sampling. This idea has been extended to
the off-policy case to produce stable and more efficient methods by Munos, Stepleton,
Harutyunyan, and Bellemare (2016) and by Mahmood, Yu and Sutton (2017).

Another, complementary strategy is to allow the target policy to be determined in
part by the behavior policy, in such a way that it never can be so different from it to
create large importance sampling ratios. For example, the target policy can be defined by
reference to the behavior policy, as in the “recognizers” proposed by Precup et al. (2006).

11.10 Summary

Off-policy learning is a tempting challenge, testing our ingenuity in designing stable and
efficient learning algorithms. Tabular Q-learning makes off-policy learning seem easy,
and it has natural generalizations to Expected Sarsa and to the Tree Backup algorithm.
But as we have seen in this chapter, the extension of these ideas to significant function
approximation, even linear function approximation, involves new challenges and forces us
to deepen our understanding of reinforcement learning algorithms.

Why go to such lengths? One reason to seek off-policy algorithms is to give flexibility
in dealing with the tradeoff between exploration and exploitation. Another is to free
behavior from learning, and avoid the tyranny of the target policy. TD learning appears
to hold out the possibility of learning about multiple things in parallel, of using one
stream of experience to solve many tasks simultaneously. We can certainly do this in
special cases, just not in every case that we would like to or as efficiently as we would
like to.

In this chapter we divided the challenge of off-policy learning into two parts. The
first part, correcting the targets of learning for the behavior policy, is straightforwardly
dealt with using the techniques devised earlier for the tabular case, albeit at the cost of
increasing the variance of the updates and thereby slowing learning. High variance will
probably always remains a challenge for off-policy learning.

The second part of the challenge of off-policy learning emerges as the instability
of semi-gradient TD methods that involve bootstrapping. We seek powerful function
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approximation, off-policy learning, and the efficiency and flexibility of bootstrapping
TD methods, but it is challenging to combine all three aspects of this deadly triad in
one algorithm without introducing the potential for instability. There have been several
attempts. The most popular has been to seek to perform true stochastic gradient descent
(SGD) in the Bellman error (a.k.a. the Bellman residual). However, our analysis concludes
that this is not an appealing goal in many cases, and that anyway it is impossible to
achieve with a learning algorithm—the gradient of the BE is not learnable from experience
that reveals only feature vectors and not underlying states. Another approach, Gradient-
TD methods, performs SGD in the projected Bellman error. The gradient of the PBE
is learnable with O(d) complexity, but at the cost of a second parameter vector with a
second step size. The newest family of methods, Emphatic-TD methods, refine an old idea
for reweighting updates, emphasizing some and de-emphasizing others. In this way they
restore the special properties that make on-policy learning stable with computationally
simple semi-gradient methods.

The whole area of off-policy learning is relatively new and unsettled. Which methods
are best or even adequate is not yet clear. Are the complexities of the new methods
introduced at the end of this chapter really necessary? Which of them can be combined
effectively with variance reduction methods? The potential for off-policy learning remains
tantalizing, the best way to achieve it still a mystery.

Bibliographical and Historical Remarks

11.1  The first semi-gradient method was linear TD(A) (Sutton, 1988). The name
“semi-gradient” is more recent (Sutton, 2015a). Semi-gradient off-policy TD(0)
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Chapter 12

Eligibility Traces

Eligibility traces are one of the basic mechanisms of reinforcement learning. For example,
in the popular TD(\) algorithm, the A refers to the use of an eligibility trace. Almost any
temporal-difference (TD) method, such as Q-learning or Sarsa, can be combined with
eligibility traces to obtain a more general method that may learn more efficiently.

Eligibility traces unify and generalize TD and Monte Carlo methods. When TD
methods are augmented with eligibility traces, they produce a family of methods spanning
a spectrum that has Monte Carlo methods at one end (A=1) and one-step TD methods
at the other (A=0). In between are intermediate methods that are often better than
either extreme method. Eligibility traces also provide a way of implementing Monte Carlo
methods online and on continuing problems without episodes.

Of course, we have already seen one way of unifying TD and Monte Carlo methods: the
n-step TD methods of Chapter 7. What eligibility traces offer beyond these is an elegant
algorithmic mechanism with significant computational advantages. The mechanism is
a short-term memory vector, the eligibility trace z; € R?, that parallels the long-term
weight vector w;, € R?. The rough idea is that when a component of w; participates in
producing an estimated value, then the corresponding component of z; is bumped up and
then begins to fade away. Learning will then occur in that component of w; if a nonzero
TD error occurs before the trace falls back to zero. The trace-decay parameter A € [0, 1]
determines the rate at which the trace falls.

The primary computational advantage of eligibility traces over n-step methods is that
only a single trace vector is required rather than a store of the last n feature vectors.
Learning also occurs continually and uniformly in time rather than being delayed and
then catching up at the end of the episode. In addition learning can occur and affect
behavior immediately after a state is encountered rather than being delayed n steps.

Eligibility traces illustrate that a learning algorithm can sometimes be implemented in
a different way to obtain computational advantages. Many algorithms are most naturally
formulated and understood as an update of a state’s value based on events that follow
that state over multiple future time steps. For example, Monte Carlo methods (Chapter 5)
update a state based on all the future rewards, and n-step TD methods (Chapter 7)
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update based on the next n rewards and state n steps in the future. Such formulations,
based on looking forward from the updated state, are called forward views. Forward views
are always somewhat complex to implement because the update depends on later things
that are not available at the time. However, as we show in this chapter it is often possible
to achieve nearly the same updates—and sometimes ezactly the same updates—with an
algorithm that uses the current TD error, looking backward to recently visited states
using an eligibility trace. These alternate ways of looking at and implementing learning
algorithms are called backward views. Backward views, transformations between forward
views and backward views, and equivalences between them, date back to the introduction
of temporal difference learning but have become much more powerful and sophisticated
since 2014. Here we present the basics of the modern view.

As usual, first we fully develop the ideas for state values and prediction, then extend
them to action values and control. We develop them first for the on-policy case then
extend them to off-policy learning. Our treatment pays special attention to the case of
linear function approximation, for which the results with eligibility traces are stronger.
All these results apply also to the tabular and state aggregation cases because these are
special cases of linear function approximation.

12.1 The A-return

In Chapter 7 we defined an n-step return as the sum of the first n rewards plus the
estimated value of the state reached in n steps, each appropriately discounted (7.1). The
general form of that equation, for any parameterized function approximator, is

Giityn = Rep1 +7Rigo+ - '+’Yn71Rt+n+’Ynﬁ(st+nywt+n—1)7 0<t<T-n, (12.1)

where 0(s,w) is the approximate value of state s given weight vector w (Chapter 9), and
T is the time of episode termination, if any. We noted in Chapter 7 that each n-step
return, for n > 1, is a valid update target for a tabular learning update, just as it is for
an approximate SGD learning update such as (9.7).

Now we note that a valid update can be done not just toward any n-step return, but
toward any average of n-step returns for different ns. For example, an update can be
done toward a target that is half of a two-step return and half of a four-step return:
%Gt:t.i'_Q + %Gt:t+4. Any set of n-step returns can be averaged in this way, even an infinite
set, as long as the weights on the component returns are positive and sum to 1. The
composite return possesses an error reduction property similar to that of individual n-step
returns (7.3) and thus can be used to construct updates with guaranteed convergence
properties. Averaging produces a substantial new range of algorithms. For example, one
could average one-step and infinite-step returns to obtain another way of interrelating TD
and Monte Carlo methods. In principle, one could even average experience-based updates
with DP updates to get a simple combination of experience-based and model-based
methods (cf. Chapter 8).

An update that averages simpler component updates is called a compound update. The
backup diagram for a compound update consists of the backup diagrams for each of the
component updates with a horizontal line above them and the weighting fractions below.
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For example, the compound update for the case mentioned at the start of
this section, mixing half of a two-step return and half of a four-step return,
has the diagram shown to the right. A compound update can only be done
when the longest of its component updates is complete. The update at the
right, for example, could only be done at time ¢+ 4 for the estimate formed at
time . In general one would like to limit the length of the longest component
update because of the corresponding delay in the updates.

The TD() algorithm can be understood as one particular way of averaging
n-step updates. This average contains all the n-step updates, each weighted
proportionally to A" ™! (where A € [0,1]), and is normalized by a factor of
1— )\ to ensure that the weights sum to 1 (Figure 12.1). The resulting update
is toward a return, called the A-return, defined in its state-based form by

G =(1=X)> X" Grayn. (12.2)
n=1

wim O—eo—O—e—
wim Qoo+ +—eo—D—e—

Figure 12.2 further illustrates the weighting on the sequence of n-step returns in the
A-return. The one-step return is given the largest weight, 1 — A; the two-step return is
given the next largest weight, (1 — A\)\; the three-step return is given the weight (1 — \)A?;
and so on. The weight fades by A with each additional step. After a terminal state has
been reached, all subsequent n-step returns are equal to the conventional return, G;. If

TD())

| OO
O-—e—O-——0

T
!
T
!
(1= M)A ?
!
O

Zzl ‘. O] St Rr

)\T—t—l

Figure 12.1: The backup digram for TD(A). If A = 0, then the overall update reduces to its
first component, the one-step TD update, whereas if A = 1, then the overall update reduces to

its last component, the Monte Carlo update.



290 Chapter 12: Eligibility Traces

weight given to
- the 3-step return total area = 1
is (1 —A)A?

decay by A
Weighting 1-a weight given to

actual, final return
is AT-t1

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

we want, we can separate these post-termination terms from the main sum, yielding

T—t—1
G} = (1=X) ) N 'Gun + NG, (12.3)

n=1

as indicated in the figures. This equation makes it clearer what happens when A = 1. In
this case the main sum goes to zero, and the remaining term reduces to the conventional
return. Thus, for A = 1, updating according to the A-return is a Monte Carlo algorithm.
On the other hand, if A = 0, then the A-return reduces to G141, the one-step return.
Thus, for A = 0, updating according to the A-return is a one-step TD method.

Exercise 12.1 Just as the return can be written recursively in terms of the first reward and
itself one-step later (3.9), so can the A-return. Derive the analogous recursive relationship
from (12.2) and (12.1). a

Ezercise 12.2 The parameter A characterizes how fast the exponential weighting in
Figure 12.2 falls off, and thus how far into the future the A-return algorithm looks in
determining its update. But a rate factor such as A is sometimes an awkward way of
characterizing the speed of the decay. For some purposes it is better to specify a time
constant, or half-life. What is the equation relating A and the half-life, 7, the time by
which the weighting sequence will have fallen to half of its initial value? O

We are now ready to define our first learning algorithm based on the A-return: the
offline A-return algorithm. As an offline algorithm, it makes no changes to the weight
vector during the episode. Then, at the end of the episode, a whole sequence of offline
updates are made according to our usual semi-gradient rule, using the A-return as the
target:

Wil = Wy + a[Gg\ —5(Syw) | Va(Siw,), t=0,...,T 1. (12.4)
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The A-return gives us an alternative way of moving smoothly between Monte Carlo
and one-step TD methods that can be compared with the n-step bootstrapping way
developed in Chapter 7. There we assessed effectiveness on a 19-state random walk
task (Example 7.1, page 144). Figure 12.3 shows the performance of the offline A-return
algorithm on this task alongside that of the n-step methods (repeated from Figure 7.2).
The experiment was just as described earlier except that for the A-return algorithm
we varied A instead of n. The performance measure used is the estimated root-mean-
squared error between the correct and estimated values of each state measured at the
end of the episode, averaged over the first 10 episodes and the 19 states. Note that
overall performance of the offline A-return algorithms is comparable to that of the n-step
algorithms. In both cases we get best performance with an intermediate value of the
bootstrapping parameter, n for n-step methods and A for the offline A-return algorithm.

; ; n-step TD methods
Off-line A-return algorithm ) (frf)’m Chaper 7)

RMS error
at the end
of the episode ¢4
over the first
10 episodes 035

045

03

0.25

0 02 04 0.6 08 1 0 0.2 04 0.6 0.8 1

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the offline A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (A or n) performed best. The results with the offline A-return algorithm
are slightly better at the best values of o and A, and at high a.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time to
all the future rewards and decide how best to combine them. We might imagine ourselves
riding the stream of states, looking forward from each state to determine its update, as
suggested by Figure 12.4. After looking forward from and updating one state, we move
on to the next and never have to work with the preceding state again. Future states,
on the other hand, are viewed and processed repeatedly, once from each vantage point
preceding them.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

12.2 TD())

TD()) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computationally-congenial backward view using
eligibility traces. Here we will show empirically that it approximates the offline A-return
algorithm presented in the previous section.

TD(A) improves over the offline A-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather than all at the end of the episode. And third, it can be applied to
continuing problems rather than just to episodic problems. In this section we present the
semi-gradient version of TD(A) with function approximation.

With function approximation, the eligibility trace is a vector z; € R? with the same
number of components as the weight vector w;. Whereas the weight vector is a long-term
memory, accumulating over the lifetime of the system, the eligibility trace is a short-term
memory, typically lasting less time than the length of an episode. Eligibility traces assist
in the learning process; their only consequence is that they affect the weight vector, and
then the weight vector determines the estimated value.

In TD(A), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away by
YA

Z_q = O,

zy =Y zi—1 + VO(S,wy), 0<t<T, (12.5)

where « is the discount rate and ) is the parameter introduced in the previous section,
which we henceforth call the trace-decay parameter. The eligibility trace keeps track
of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms of yA. (Recall that in
linear function approximation, Vo (S, wy) is just the feature vector, x4, in which case the
eligibility trace vector is just a sum of past, fading, input vectors.) The trace is said to
indicate the eligibility of each component of the weight vector for undergoing learning
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changes should a reinforcing event occur. The reinforcing events we are concerned with
are the moment-by-moment one-step TD errors. The TD error for state-value prediction
is

575 = Rt+1 + ’Y’IA}(SH_l,Wt) — ’lA)(St,Wt). (126)

In TD(A), the weight vector is updated on each step proportional to the scalar TD error
and the vector eligibility trace:

Wit = Wi + a(Stzt. (127)

Semi-gradient TD()\) for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : $ x R? — R such that 9(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate X\ € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z<+ 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(:|5)
| Take action A, observe R, S’
| z< Xz + Vi(S,w)
| 6« R+~0(S",w) — 0(S,w)
| W« w+adz
| S+ 9

until S’ is terminal

Figure 12.5: The backward or mechanistic view of TD(\). Each update depends on the current
TD error combined with the current eligibility traces of past events.
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TD(A) is oriented backward in time. At each moment we look at the current TD error
and assign it backward to each prior state according to how much that state contributed
to the current eligibility trace at that time. We might imagine ourselves riding along the
stream of states, computing TD errors, and shouting them back to the previously visited
states, as suggested by Figure 12.5. Where the TD error and traces come together, we
get the update given by (12.7), changing the values of those past states for when they
occur again in the future.

To better understand the backward view of TD()\), consider what happens at various
values of A\. If A = 0, then by (12.5) the trace at t is exactly the value gradient
corresponding to S;. Thus the TD(\) update (12.7) reduces to the one-step semi-gradient
TD update treated in Chapter 9 (and, in the tabular case, to the simple TD rule (6.2)).
This is why that algorithm was called TD(0). In terms of Figure 12.5, TD(0) is the case
in which only the one state preceding the current one is changed by the TD error. For
larger values of A, but still A < 1, more of the preceding states are changed, but each
more temporally distant state is changed less because the corresponding eligibility trace
is smaller, as suggested by the figure. We say that the earlier states are given less credit
for the TD error.

If A =1, then the credit given to earlier states falls only by v per step. This turns out
to be just the right thing to do to achieve Monte Carlo behavior. For example, remember
that the TD error, d;, includes an undiscounted term of R;y;. In passing this back k
steps it needs to be discounted, like any reward in a return, by v*, which is just what
the falling eligibility trace achieves. If A =1 and v = 1, then the eligibility traces do not
decay at all with time. In this case the method behaves like a Monte Carlo method for
an undiscounted, episodic task. If A = 1, the algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than those
presented earlier and that significantly increases their range of applicability. Whereas
the earlier Monte Carlo methods were limited to episodic tasks, TD(1) can be applied to
discounted continuing tasks as well. Moreover, TD(1) can be performed incrementally
and online. One disadvantage of Monte Carlo methods is that they learn nothing from
an episode until it is over. For example, if a Monte Carlo control method takes an action
that produces a very poor reward but does not end the episode, then the agent’s tendency
to repeat the action will be undiminished during the episode. Online TD(1), on the other
hand, learns in an n-step TD way from the incomplete ongoing episode, where the n
steps are all the way up to the current step. If something unusually good or bad happens
during an episode, control methods based on TD(1) can learn immediately and alter their
behavior on that same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see how
well TD(A) does in approximating the offline A-return algorithm. The results for both
algorithms are shown in Figure 12.6. For each A value, if « is selected optimally for it (or
smaller), then the two algorithms perform virtually identically. If « is chosen larger than
is optimal, however, then the A-return algorithm is only a little worse whereas TD(\)
is much worse and may even be unstable. This is not catastrophic for TD(\) on this
problem, as these higher parameter values are not what one would want to use anyway,
but for other problems it can be a significant weakness.
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Off-line A-return algorithm
(from the previous section)

RMS error 45
at the end
of the episode o4}
over the first
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Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD()) alongside
that of the offline A-return algorithm. The two algorithms performed virtually identically at low
(less than optimal) a values, but TD(\) was worse at high « values.

Linear TD(A) has been proved to converge in the on-policy case if the step-size
parameter is reduced over time according to the usual conditions (2.7). Just as discussed
in Section 9.4, convergence is not to the minimum-error weight vector, but to a nearby
weight vector that depends on A. The bound on solution quality presented in that section
(9.14) can now be generalized to apply for any A. For the continuing discounted case,

. 1 —~\ _
VE(we) < T2 min VE(w). (12.8)

—y W
That is, the asymptotic error is no more than 1112‘ times the smallest possible error. As

A approaches 1, the bound approaches the minimum error (and it is loosest at A=0).
In practice, however, A =1 is often the poorest choice, as will be illustrated later in
Figure 12.14.

Ezercise 12.8 Some insight into how TD(\) can closely approximate the offline A-return
algorithm can be gained by seeing that the latter’s error term (in brackets in (12.4)) can
be written as the sum of TD errors (12.6) for a single fixed w. Show this, following the
pattern of (6.6), and using the recursive relationship for the A-return you obtained in
Exercise 12.1. O

Exercise 12.4 Use your result from the preceding exercise to show that, if the weight
updates over an episode were computed on each step but not actually used to change the
weights (w remained fixed), then the sum of TD())’s weight updates would be the same
as the sum of the offline A-return algorithm’s updates. O

12.3 mn-step Truncated A-return Methods

The offline A-return algorithm is an important ideal, but it is of limited utility because
it uses the A-return (12.2), which is not known until the end of the episode. In the



296 Chapter 12: Eligibility Traces

continuing case, the A-return is technically never known, as it depends on n-step returns
for arbitrarily large n, and thus on rewards arbitrarily far in the future. However, the
dependence becomes weaker for longer-delayed rewards, falling by v\ for each step of
delay. A natural approximation, then, would be to truncate the sequence after some
number of steps. Our existing notion of n-step returns provides a natural way to do this
in which the missing rewards are replaced with estimated values.

In general, we define the truncated \-return for time ¢, given data only up to some
later horizon, h, as

h—t—1
(1= 3 NG + NG, 0<t<h<T.  (12.9)

n=1

A
C.’17§:h

If you compare this equation with the A-return (12.3), it is clear that the horizon h is
playing the same role as was previously played by T, the time of termination. Whereas
in the A-return there is a residual weight given to the conventional return Gy, here it is
given to the longest available n-step return, Gy, (Figure 12.2).

The truncated A-return immediately gives rise to a family of n-step A-return algorithms
similar to the n-step methods of Chapter 7. In all of these algorithms, updates are
delayed by n steps and only take into account the first n rewards, but now all the k-step
returns are included for 1 < k < n (whereas the earlier n-step algorithms used only the
n-step return), weighted geometrically as in Figure 12.2. In the state-value case, this
family of algorithms is known as truncated TD(A), or TTD(A). The compound backup
diagram, shown in Figure 12.7, is similar to that for TD(A) (Figure 12.1) except that the
longest component update is at most n steps rather than always going all the way to the

n-step truncated TD(X)

A B
! % T ] te
AR G
I I I iftJrn’ZT ' A1
SR O S
CI) 0 Sr Rr
(1-A)A? I Avint ATt
O Setn Ritn
-t

Figure 12.7: The backup diagram for truncated TD()).
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end of the episode. TTD(\) is defined by (cf. (9.15)):
Witn = Wipn—1 +a [Ghypn — 0(S,Wign—1)] VO(St,Wiin—1), 0<t<T.

This algorithm can be implemented efficiently so that per-step computation does not scale
with n (though of course memory must). Much as in n-step TD methods, no updates are
made on the first n — 1 time steps of each episode, and n — 1 additional updates are made
upon termination. Efficient implementation relies on the fact that the k-step A-return
can be written exactly as

t+k—1
Glivr = 0(Se,wi1) + Z (YN, (12.10)

i=t

where
0t = Rep1 +v0(Seq1,we) — 0(Se,wi—1).

Exercise 12.5 Several times in this book (often in exercises) we have established that
returns can be written as sums of TD errors if the value function is held constant. Why
is (12.10) another instance of this? Prove (12.10). O

12.4 Redoing Updates: Online \-return Algorithm

Choosing the truncation parameter n in truncated TD(\) involves a tradeoff. n should
be large so that the method closely approximates the offline A-return algorithm, but it
should also be small so that the updates can be made sooner and can influence behavior
sooner. Can we get the best of both? Well, yes, in principle we can, albeit at the cost of
computational complexity.

The idea is that, on each time step as you gather a new increment of data, you go back
and redo all the updates since the beginning of the current episode. The new updates
will be better than the ones you previously made because now they can take into account
the time step’s new data. That is, the updates are always towards an m-step truncated
A-return target, but they always use the latest horizon. In each pass over that episode
you can use a slightly longer horizon and obtain slightly better results. Recall that the
truncated A-return is defined in (12.9) as

-

h 1
G = (1=X) D X" 'Grpn + N7T7'Gran.
n=1

Let us step through how this target could ideally be used if computational complexity was
not an issue. The episode begins with an estimate at time 0 using the weights w from
the end of the previous episode. Learning begins when the data horizon is extended to
time step 1. The target for the estimate at step 0, given the data up to horizon 1, could
only be the one-step return Gy.;, which includes R; and bootstraps from the estimate
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9(S1,wo). Note that this is exactly what G7); is, with the sum in the first term of the
equation degenerating to zero. Using this update target, we construct wy. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of
Ry and S5, as well as the new wy, so now we can construct a better update target GS;Q
for the first update from Sy as well as a better update target G3., for the second update
from S;. Using these improved targets, we redo the updates at S; and S, starting again
from wg, to produce ws. Now we advance the horizon to step 3 and repeat, going all the
way back to produce three new targets, redoing all updates starting from the original wq
to produce ws, and so on. Each time the horizon is advanced, all the updates are redone
starting from wg using the weight vector from the preceding horizon.

This conceptual algorithm involves multiple passes over the episode, one at each
horizon, each generating a different sequence of weight vectors. To describe it clearly we
have to distinguish between the weight vectors computed at the different horizons. Let us
use w]' to denote the weights used to generate the value at time ¢ in the sequence up to
horizon h. The first weight vector wf in each sequence is that inherited from the previous
episode (so they are the same for all h), and the last weight vector w? in each sequence
defines the ultimate weight-vector sequence of the algorithm. At the final horizon h =T
we obtain the final weights wX. which will be passed on to form the initial weights of the
next episode. With these conventions, the three first sequences described in the previous
paragraph can be given explicitly:

h=1: wi=wj+al[Gyy —1(So,wy)] Vi(So,w),

h=2: wi=wj+al[G,—0(So,wj)]

\V/
w3 = wi + a [Gry — 9(S1,wl)] Vo(S1,wi),

h=3: wi=wj+al[Ghs;—0(So,wp)]|V
wi = wi + a [Grs — 9(S1,wh)] Vo(Si,wi),
\V/

Wi = Wi+ a [Gos — 0(S2,w3)]
The general form for the update is
wih =wl+a [GZ\:h - f)(St,wf)} Vo(S;,wh), 0<t<h<T.

This update, together with w; = w! defines the online \-return algorithm.

The online A-return algorithm is fully online, determining a new weight vector wy
at each step t during an episode, using only information available at time . Its main
drawback is that it is computationally complex, passing over the portion of the episode
experienced so far on every step. Note that it is strictly more complex than the offline
A-return algorithm, which passes through all the steps at the time of termination but does
not make any updates during the episode. In return, the online algorithm can be expected
to perform better than the offline one, not only during the episode when it makes an
update while the offline algorithm makes none, but also at the end of the episode because
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the weight vector used in bootstrapping (in Gé ») has had a larger number of informative
updates. This effect can be seen if one looks carefully at Figure 12.8, which compares the
two algorithms on the 19-state random walk task.

On-line A-return algorithm Off-line A-return algorithm
= true online TD(A) (from Section 12.1)

055
05

RMS error 5L
at the end
of the episode o4
over the first
10 episodes 035

03

0251

Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and offline
A-return algorithms. The performance measure here is the VE at the end of the episode, which
should be the best case for the offline algorithm. Nevertheless, the online algorithm performs
subtly better. For comparison, the A=0 line is the same for both methods.

12.5 True Online TD()\)

The online A-return algorithm just presented is currently the best performing temporal-
difference algorithm. It is an ideal which online TD(X) only approximates. As presented,
however, the online A-return algorithm is very complex. Is there a way to invert this
forward-view algorithm to produce an efficient backward-view algorithm using eligibility
traces? It turns out that there is indeed an exact computationally congenial implementa-
tion of the online A-return algorithm for the case of linear function approximation. This
implementation is known as the true online TD()) algorithm because it is “truer” to the
ideal of the online A-return algorithm than the TD(A) algorithm is.

The derivation of true online TD()) is a little too complex to present here (see the
next section and the appendix to the paper by van Seijen et al., 2016) but its strategy is
simple. The sequence of weight vectors produced by the online A-return algorithm can
be arranged in a triangle:

0
N
C NI
wi Wi W5

3 3 3 3
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One row of this triangle is produced on each time step. It turns out that the weight
vectors on the diagonal, the wi, are the only ones really needed. The first, w{), is the
initial weight vector of the episode, the last, w% , is the final weight vector, and each
weight vector along the way, wi, plays a role in bootstrapping in the n-step returns of
the updates. In the final algorithm the diagonal weight vectors are renamed without a
superscript, w; = w!. The strategy then is to find a compact, efficient way of computing
each w! from the one before. If this is done, for the linear case in which 9(s,w) = w ' x(s),
then we arrive at the true online TD()) algorithm:

Wt+1 = Wi —+ Oé(;tZt + « (W;rXt — th_lxt) (Zt — Xt),

where we have used the shorthand x; = x(S;), ¢, is defined as in TD()) (12.6), and z; is
defined by

7y = YAZi_1 + (1 — a’y)\zllxt) X;. (12.11)

This algorithm has been proven to produce exactly the same sequence of weight vectors,
w;,0 <t <T, as the online A-return algorithm (van Seijen et al. 2016). Thus the results
on the random walk task on the left of Figure 12.8 are also its results on that task. Now,
however, the algorithm is much less expensive. The memory requirements of true online
TD(A) are identical to those of conventional TD()), while the per-step computation is
increased by about 50% (there is one more inner product in the eligibility-trace update).
Overall, the per-step computational complexity remains of O(d), the same as TD(\).
Pseudocode for the complete algorithm is given in the box.

True online TD()) for estimating w'x ~ v,

Input: the policy 7 to be evaluated

Input: a feature function x : 8 — R< such that x(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate \ € [0, 1]
Initialize value-function weights w € R? (e.g., w = 0)

Loop for each episode:
Initialize state and obtain initial feature vector x
z <0 (a d-dimensional vector)
Vg < 0 (a temporary scalar variable)
Loop for each step of episode:
| Choose A~
| Take action A, observe R, x’ (feature vector of the next state)
| Vewix
| V' i+ wix
| 6« R+AV' -V
| z+ydz+ (1—ayrz'x)x
| wew+a(d+V —Vua)z—a(V —Vyg)x
| Vg <V’
| x++x
until x’ = 0 (signaling arrival at a terminal state)
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The eligibility trace (12.11) used in true online TD(\) is called a dutch trace to
distinguish it from the trace (12.5) used in TD(A), which is called an accumulating trace.
Earlier work often used a third kind of trace called the replacing trace, defined only for
the tabular case or for binary feature vectors such as those produced by tile coding. The
replacing trace is defined on a component-by-component basis depending on whether the
component of the feature vector was 1 or 0O:

. 1 if mi,t =1
Zit = { YAzit—1 otherwise. (12.12)
Nowadays, we see replacing traces as crude approximations to dutch traces, which largely
supercede them. Dutch traces usually perform better than replacing traces and have a
clearer theoretical basis. Accumulating traces remain of interest for nonlinear function
approximations where dutch traces are not available.

12.6 *Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact
they have nothing to do with it. In fact, eligibility traces arise even in Monte Carlo
learning, as we show in this section. We show that the linear MC algorithm (Chapter 9),
taken as a forward view, can be used to derive an equivalent yet computationally cheaper
backward-view algorithm using dutch traces. This is the only equivalence of forward- and
backward-views that we explicitly demonstrate in this book. It gives some of the flavor
of the proof of equivalence of true online TD(\) and the online A-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 202) makes
the following sequence of updates, one for each time step of the episode:

Wi =weta[G-wx]x, 0<t<T. (12.13)

To simplify the example, we assume here that the return G is a single reward received at
the end of the episode (this is why G is not subscripted by time) and that there is no
discounting. In this case the update is also known as the Least Mean Square (LMS) rule.
As a Monte Carlo algorithm, all the updates depend on the final reward/return, so none
can be made until the end of the episode. The MC algorithm is an offline algorithm and
we do not seek to improve this aspect of it. Rather we seek merely an implementation of
this algorithm with computational advantages. We will still update the weight vector
only at the end of the episode, but we will do some computation during each step of the
episode and less at its end. This will give a more equal distribution of computation—O(d)
per step—and also remove the need to store the feature vectors at each step for use later
at the end of each episode. Instead, we will introduce an additional vector memory, the
eligibility trace, keeping in it a summary of all the feature vectors seen so far. This will
be sufficient to efficiently recreate exactly the same overall update as the sequence of MC
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updates (12.13), by the end of the episode:

Wr =Wpr_1 +a (G — W—Tr_le,l) X7_1

=wr_1 +axr_1 (=xj_;wr_1) + aGxr_1
= (I - aXT,lx—Tll) wr_1+aGxr_q
=Fr_iwr_1 +aGxp_q

where F; = I — ax;x, is a forgetting, or fading, matrix. Now, recursing,
=Fr_1 (Fr_owr_s + aGxr_3) + aGxr_1
=Fr 1 Fr_owr o+ aG (Fr_1xr_o +X7_1)
=Fr_ 1Fr_ o (Fr_swr_3+ aGxyp_3) + oG (Fr_1xr_2 +x1_1)
=Fr 1 Fr oFr_swr_3+aG (Fro1Fr_oxr_s + Fr_ixr_o +x7_1)

T-1

=Fr_1Fr_o---Fowg + aG Z FriFro- - Frpixg
a1 k=0
Z7 1
=ar_1+aGzr_q, (12.14)

where ar_1 and zp_; are the values at time 7' — 1 of two auxilary memory vectors that
can be updated incrementally without knowledge of G and with O(d) complexity per time
step. The z; vector is in fact a dutch-style eligibility trace. It is initialized to zg = xg
and then updated according to

I
M~

Zy FiF; 1 Frpaxg, 1<t<T

R
LI

FiFi_1- Froixe +x¢
0

E
I

t—1
Fy Z Fi aFi o Frpixg +x;
k=0
=Fizi_1 + x4

= (I — axtxj) Zi—1 + Xy
=Zi_1 — axtx;rzt,l + Xt
=Zi_1 —Q (th_lxt) Xt + Xt
=Zi_1+ (1 — ath_lxt) X¢,

which is the dutch trace for the case of yYA=1 (cf. Eq. 12.11). The a; auxilary vector is
initialized to agp = wq and then updated according to

a = FtF;_1---Fowyg = Fia;_1 = a;_1 — OéXtX;rat_l, 1<t<T.
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The auxiliary vectors, a; and z;, are updated on each time step ¢ < T and then, at time
T when G is observed, they are used in (12.14) to compute wr. In this way we achieve
exactly the same final result as the MC/LMS algorithm that has poor computational
properties (12.13), but now with an incremental algorithm whose time and memory
complexity per step is O(d). This is surprising and intriguing because the notion of
an eligibility trace (and the dutch trace in particular) has arisen in a setting without
temporal-difference (TD) learning (in contrast to van Seijen and Sutton, 2014). It seems
eligibility traces are not specific to TD learning at all; they are more fundamental than
that. The need for eligibility traces seems to arise whenever one tries to learn long-term
predictions in an efficient manner.

12.7 Sarsa()\)

Very few changes in the ideas already presented in this chapter are required in order to
extend eligibility-traces to action-value methods. To learn approximate action values,
4(s,a, w), rather than approximate state values, 0(s,w), we need to use the action-value
form of the n-step return, from Chapter 10:

Geign = Repr1 +--- + ’YnflRt+n +"G(Sttns Atdn, Wtn—1), t+n<T,

with Gy = Gy if t +n > T. Using this, we can form the action-value form of the
truncated A-return, which is otherwise identical to the state-value form (12.9). The
action-value form of the offline A-return algorithm (12.4) simply uses § rather than o:

Wt+1 = Wi + Oé|:Gi\ — d(St, At,Wt):| V(j(St,At7Wt), t= O, . ,T — 1, (1215)

where G = G7.... The compound backup diagram for this forward view is shown in
Figure 12.9. Notice the similarity to the diagram of the TD(\) algorithm (Figure 12.1).
The first update looks ahead one full step, to the next state—action pair, the second looks
ahead two steps, to the second state—action pair, and so on. A final update is based on
the complete return. The weighting of each n-step update in the A-return is just as in
TD(A) and the A-return algorithm (12.3).

The temporal-difference method for action values, known as Sarsa()), approximates
this forward view. It has the same update rule as given earlier for TD()):

Wit = Wy + a0y 2y,
except, naturally, using the action-value form of the TD error:

0t = Reqr1 +vG(Stq1, Ary1, W) — §(St, At, W), (12.16)
and the action-value form of the eligibility trace:

Z_1 = 0,
2y = YAz 1 + Vq(Sy, Ay, wy), 0<t<T.
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Sarsa(\)

z o——we
o——eo——oe

(1= M)A

o——eo+—D+—eo—D+—oe

1=\ Ar_,

Zzl O Sr BRr

/\T—t—l
Figure 12.9: Sarsa(\)’s backup diagram. Compare with Figure 12.1.

Complete pseudocode for Sarsa(\) with linear function approximation, binary features,
and either accumulating or replacing traces is given in the box on the next page. This
pseudocode highlights a few optimizations possible in the special case of binary features
(features are either active (=1) or inactive (=0).

Example 12.1: Traces in Gridworld The use of eligibility traces can substantially
increase the efficiency of control algorithms over one-step methods and even over n-step
methods. The reason for this is illustrated by the gridworld example below.

Action values increased Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa by Sarsa() with A=0.9
\ ] ainal ] e I
\ \ v ' '
r“ 4 mall ] - B
Gl [] G Gl [y Gl [y
t J [} [y P b=

The first panel shows the path taken by an agent in a single episode. The initial estimated
values were zero, and all rewards were zero except for a positive reward at the goal
location marked by G. The arrows in the other panels show, for various algorithms, which
action-values would be increased, and by how much, upon reaching the goal. A one-step
method would increment only the last action value, whereas an n-step method would
equally increment the last n actions’ values, and an eligibility trace method would update
all the action values up to the beginning of the episode, to different degrees, fading with
recency. The fading strategy is often the best. [ ]
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Sarsa()\) with binary features and linear function approximation

for estimating w'x ~ ¢, or ¢,

Input: a function F(s, a) returning the set of (indices of) active features for s, a
Input: a policy 7 (if estimating g, )

Algorithm parameters: step size a > 0, trace decay rate X € [0, 1]

Initialize: w = (w1,...,wq)" € R? (e.g., w=0),z = (21,...,24)| € R?

Loop for each episode:
Initialize S
Choose A ~ 7(:|S) or e-greedy according to ¢(S, -, w)
z<+0
Loop for each step of episode:
Take action A, observe R, S’

0+ R

Loop for i in F(S, A):
0+ 06— wy
zi 2z +1 (accumulating traces)
or z; < 1 (replacing traces)

If S’ is terminal then:
W< W+ adz
Go to next episode
Choose A" ~ 7(:|S”) or near greedily ~ ¢(S’,-, w)
Loop for ¢ in F(S"; A"): § < 6 + yw;
W W+ adz
Z — Y2
S+ S A A

Ezercise 12.6 Modify the pseudocode for Sarsa()) to use dutch traces (12.11) without the
other distinctive features of a true online algorithm. Assume linear function approximation
and binary features. O

Example 12.2: Sarsa(\) on Mountain Car Figure 12.10 (left) on the next page
shows results with Sarsa(\) on the Mountain Car task introduced in Example 10.1. The
function approximation, action selection, and environmental details were exactly as in
Chapter 10, and thus it is appropriate to numerically compare these results with the
Chapter 10 results for n-step Sarsa (right side of the figure). The earlier results varied the
update length n whereas here for Sarsa(\) we vary the trace parameter A, which plays
a similar role. The fading-trace bootstrapping strategy of Sarsa(\) appears to result in
more efficient learning on this problem. |

There is also an action-value version of our ideal TD method, the online A-return algo-
rithm (Section 12.4) and its efficient implementation as true online TD(A) (Section 12.5).
Everything in Section 12.4 goes through without change other than to use the action-value
form of the n-step return given at the beginning of the current section. The analyses in
Sections 12.5 and 12.6 also carry through for action values, the only change being the use
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Mountain Car
Steps per episode
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Figure 12.10: Early performance on the Mountain Car task of Sarsa(A) with replacing traces
and n-step Sarsa (copied from Figure 10.4) as a function of the step size, a.

of state—action feature vectors x; = x(.S, A;) instead of state feature vectors x; = x(Sy).
Pseudocode for the resulting efficient algorithm, called true online Sarsa(\) is given in
the box on the next page. The figure below compares the performance of various versions
of Sarsa(\) on the Mountain Car example.

Mountain Car

Reward per episode
averaged over
first 20 episodes
and 100 runs

-150

-200

-250

-300

-350

True online Sars

a8
a8

a(n)

—a

Sarsa()\) with replacing traces

I I
0.8 1 1.4

« x number of tilings
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I
1.6

@)

1.8 2

Figure 12.11: Summary comparison of Sarsa()) algorithms on the Mountain Car task. True
online Sarsa(\) performed better than regular Sarsa(A) with both accumulating and replacing
traces. Also included is a version of Sarsa(\) with replacing traces in which, on each time step,
the traces for the state and the actions not selected were set to zero.
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True online Sarsa()\) for estimating w'x =~ ¢, or ¢.

Input: a feature function x : 87 x A — R such that x(terminal, ) = 0
Input: a policy 7 (if estimating g, )

Algorithm parameters: step size a > 0, trace decay rate X € [0, 1]
Initialize: w € R? (e.g., w = 0)

Loop for each episode:
Initialize S
Choose A ~ 7(-|S) or near greedily from S using w
x + x(S5, A)
z<+0
Qotd + 0
Loop for each step of episode:
| Take action A, observe R, S’
| Choose A" ~ 7(-|S”) or near greedily from S’ using w
| x' <+ x(5", 4
| Q<+ w'x
| Q +w'x
| 0+ R+7Q'-Q
| z+ydz+ (1—ayrz'x)x
| W(7W+a(5+Q7Qold)z*a(Q7Qold)X
| Qota < Q'
| x+x
| A+ A

until S’ is terminal

Finally, there is also a truncated version of Sarsa()), called forward Sarsa(A) (van
Seijen, 2016), which appears to be a particularly effective model-free control method for
use in conjunction with multi-layer artificial neural networks.

12.8 Variable A\ and 7

We are starting now to reach the end of our development of fundamental TD learning
algorithms. To present the final algorithms in their most general forms, it is useful to
generalize the degree of bootstrapping and discounting beyond constant parameters to
functions potentially dependent on the state and action. That is, each time step will have
a different A and ~, denoted A\; and v,. We change notation now so that A : § x A — [0, 1]
is now a function from states and actions to the unit interval such that A\; = A(S;, 4;), and
similarly, v : 8§ — [0,1] is a function from states to the unit interval such that v, = v(S;).

Introducing the function v, the termination function, is particularly significant because
it changes the return, the fundamental random variable whose expectation we seek to
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estimate. Now the return is defined more generally as

Gt = Riy1 + 741G
= Rip1 + Ve B2 Vo1 Vero Bivs + Vi1 VeroVergBera + -

9] k
= ( 11 %‘> Ri1, (12.17)

k=t \i=t+1

where, to assure the sums are finite, we require that H;O:t v, = 0 with probability one for
all £. One convenient aspect of this definition is that it enables the episodic setting and
its algorithms to be presented in terms of a single stream of experience, without special
terminal states, start distributions, or termination times. An erstwhile terminal state
becomes a state at which v(s)=0 and which transitions to the start distribution. In that
way (and by choosing () as a constant in all other states) we can recover the classical
episodic setting as a special case. State dependent termination includes other prediction
cases such as pseudo termination, in which we seek to predict a quantity without altering
the flow of the Markov process. Discounted returns can be thought of as such a quantity,
in which case state dependent termination unifies the episodic and discounted-continuing
cases. (The undiscounted-continuing case still needs some special treatment.)

The generalization to variable bootstrapping is not a change in the problem, like
discounting, but a change in the solution strategy. The generalization affects the \-
returns for states and actions. The new state-based A-return can be written recursively
as

G = Ripn 4 Yo (1= Ay )0(Si1,we) + A1 G54 (12.18)

[{9%]

where now we have added the “s” to the superscript A to remind us that this is a return
that bootstraps from state values, distinguishing it from returns that bootstrap from
action values, which we present below with “a” in the superscript. This equation says
that the A-return is the first reward, undiscounted and unaffected by bootstrapping, plus
possibly a second term to the extent that we are not discounting at the next state (that is,
according to 7, 1; recall that this is zero if the next state is terminal). To the extent that
we aren’t terminating at the next state, we have a second term which is itself divided into
two cases depending on the degree of bootstrapping in the state. To the extent we are
bootstrapping, this term is the estimated value at the state, whereas, to the extent that
we not bootstrapping, the term is the A-return for the next time step. The action-based
A-return is either the Sarsa form

G} = Rip1 +Vpn ((1 = A41)q(Seg1, Ar1, We) + )\t+1Gi\f1)7 (12.19)
or the Expected Sarsa form,

G = Rip1 + 74 ((1 = A1) Ve(Si1) + )\t+1GtAf1)> (12.20)
where (7.8) is generalized to function approximation as

Vi(s) = 3 w(als)i(s, a, wr). (12.21)

a
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Exercise 12.7 Generalize the three recursive equations above to their truncated versions,
defining GZ\:Z and G?% (]

12.9 *Off-policy Traces with Control Variates

The final step is to incorporate importance sampling. Unlike in the case of n-step
methods, for full non-truncated A-returns one does not have a practical option in which
the importance sampling is done outside the target return. Instead, we move directly
to the bootstrapping generalization of per-decision importance sampling with control
variates (Section 7.4). In the state case, our final definition of the A-return generalizes
(12.18), after the model of (7.13), to

G = py (Rt+1 Y1 (1= A1) 0(Sey1,we) + >\t+1GZ\i1)) + (1= pe)o(Se,we) (12.22)

where p; = 7;((:5"55)) is the usual single-step importance sampling ratio. Much like the

other returns we have seen in this book, the truncated version of this return can be
approximated simply in terms of sums of the state-based TD error,

0] = Rig1 + V1 10(Se41,We) — 0(Sg,wy), (12.23)
as
[e') k
Gy~ (Swi) + o107 [ vidies (12.24)
k=t  i=t+1

with the approximation becoming exact if the approximate value function does not change.

Ezercise 12.8 Prove that (12.24) becomes exact if the value function does not change.
To save writing, consider the case of t = 0, and use the notation Vi = 9(Sk,w). ]

Ezercise 12.9 The truncated version of the general off-policy return is denoted G}j,.
Guess the correct equation, based on (12.24). O
The above form of the A-return (12.24) is convenient to use in a forward-view update,

Wit1 = Wi +« (Gi\s - f}(St,Wt)) Vﬁ(St,wt)

) k
R Wy + apg <Z oy H ’)’Miﬂi) Vo(Se,wy),
k=t  i=t+1

which to the experienced eye looks like an eligibility-based TD update—the product is
like an eligibility trace and it is multiplied by TD errors. But this is just one time step of
a forward view. The relationship that we are looking for is that the forward-view update,
summed over time, is approximately equal to a backward-view update, summed over
time (this relationship is only approximate because again we ignore changes in the value
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function). The sum of the forward-view update over time is

o SIS k
Z Wil — Wy) & ZZ apebp Vo (S, we) H YiXipi
t=1 =

1 k=t i=t+1

8

[
Mw

k
apiVo(Se,wi)di, [T viders

k=1 t=1 i=t+1
(using the summation rule: Y 7 >%  =3Y Zf:x)
oo k k
=> ady Y pVi(Sewe) [ vidiess
k=1  t=1 i=t+1

which would be in the form of the sum of a backward-view TD update if the entire
expression from the second sum left could be written and updated incrementally as an
eligibility trace, which we now show can be done. That is, we show that if this expression
was the trace at time k, then we could update it from its value at time k — 1 by:

zp = Zpth St,Wt H ViNipi

1=t+1
k—1
—Zpth (St,wy) H vidipi +  peVO(Sy,wWr)
t=1 1=t+1
k—1 k—1
= xeok 3 piVo(Sewe) [T vidioi + ok V(S wi)
t=1 i=t+1
Zi—1

= pr (Ve AeZr—1 + VO(Sk,wy)),

which, changing the index from k to ¢, is the general accumulating trace update for state
values:

2y = pr (v Meze—1 + VO(Sp,wy)), (12.25)

This eligibility trace, together with the usual semi-gradient parameter-update rule for
TD()) (12.7), forms a general TD(A) algorithm that can be applied to either on-policy or
off-policy data. In the on-policy case, the algorithm is exactly TD(A) because p; is alway
1 and (12.25) becomes the usual accumulating trace (12.5) (extended to variable A and
7). In the off-policy case, the algorithm often works well but, as a semi-gradient method,
is not guaranteed to be stable. In the next few sections we will consider extensions of it
that do guarantee stability.

A very similar series of steps can be followed to derive the off-policy eligibility traces
for action-value methods and corresponding general Sarsa(A) algorithms. One could start
with either recursive form for the general action-based A-return, (12.19) or (12.20), but
the latter (the Expected Sarsa form) works out to be simpler. We extend (12.20) to the
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off-policy case after the model of (7.14) to produce

G = Riyi+741 ((1—/\t+1)‘7t(5t+1)+>\t+1 [pr11GR + Vi(Sig1) = prea@(Sepa, At+1’Wt)]>

= Rip1+ Ve (Vt(5t+1) + A1 [GRE = A(Ser, Avpa,s Wt)]) (12.26)

where V;(S;41) is as given by (12.21). Again the A-return can be written approximately
as the sum of TD errors,

e’} k
G~ q(Se, Aywi) + 08 T vidins, (12.27)
k=t i=t+1

using the expectation form of the action-based TD error:
8 = Rusr + 71 Ve(Sie1) — 4(Sp, Ar, W) (12.28)

As before, the approximation becomes exact if the approximate value function does not
change.

Ezercise 12.10 Prove that (12.27) becomes exact if the value function does not change.
To save writing, consider the case of t = 0, and use the notation @ = §(Sk, Ak, w). Hint:

Start by writing out §¢ and G3¢, then G¢ — Qo. (]
Exercise 12.11 The truncated version of the general off-policy return is denoted G2%.
Guess the correct equation for it, based on (12.27). O

Using steps entirely analogous to those for the state case, one can write a forward-view
update based on (12.27), transform the sum of the updates using the summation rule,
and finally derive the following form for the eligibility trace for action values:

zt = Y AepiZi—1 + VG(St, Ay, wi). (12.29)

This eligibility trace, together with the expectation-based TD error (12.28) and the usual
semi-gradient parameter-update rule (12.7), forms an elegant, efficient Expected Sarsa()\)
algorithm that can be applied to either on-policy or off-policy data. It is probably the
best algorithm of this type at the current time (though of course it is not guaranteed to
be stable until combined in some way with one of the methods presented in the following
sections). In the on-policy case with constant A and ~, and the usual state-action TD
error (12.16), the algorithm would be identical to the Sarsa()) algorithm presented in
Section 12.7.

Ezercise 12.12 Show in detail the steps outlined above for deriving (12.29) from (12.27).
Start with the update (12.15), substitute G7* from (12.26) for G3, then follow similar
steps as led to (12.25). O

At A =1, these algorithms become closely related to corresponding Monte Carlo
algorithms. One might expect that an exact equivalence would hold for episodic problems
and offline updating, but in fact the relationship is subtler and slightly weaker than that.
Under these most favorable conditions still there is not an episode by episode equivalence
of updates, only of their expectations. This should not be surprising as these methods
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make irrevocable updates as a trajectory unfolds, whereas true Monte Carlo methods
would make no update for a trajectory if any action within it has zero probability under
the target policy. In particular, all of these methods, even at A = 1, still bootstrap in
the sense that their targets depend on the current value estimates—it’s just that the
dependence cancels out in expected value. Whether this is a good or bad property in
practice is another question. Recently, methods have been proposed that do achieve an
exact equivalence (Sutton, Mahmood, Precup and van Hasselt, 2014). These methods
require an additional vector of “provisional weights” that keep track of updates which
have been made but may need to be retracted (or emphasized) depending on the actions
taken later. The state and state—action versions of these methods are called PTD()) and
PQ(A) respectively, where the ‘P’ stands for Provisional.

The practical consequences of all these new off-policy methods have not yet been
established. Undoubtedly, issues of high variance will arise as they do in all off-policy
methods using importance sampling (Section 11.9).

If A < 1, then all these off-policy algorithms involve bootstrapping and the deadly
triad applies (Section 11.3), meaning that they can be guaranteed stable only for the
tabular case, for state aggregation, and for other limited forms of function approximation.
For linear and more-general forms of function approximation the parameter vector may
diverge to infinity as in the examples in Chapter 11. As we discussed there, the challenge
of off-policy learning has two parts. Off-policy eligibility traces deal effectively with the
first part of the challenge, correcting for the expected value of the targets, but not at
all with the second part of the challenge, having to do with the distribution of updates.
Algorithmic strategies for meeting the second part of the challenge of off-policy learning
with eligibility traces are summarized in Section 12.11.

FEzercise 12.13 What are the dutch-trace and replacing-trace versions of off-policy
eligibility traces for state-value and action-value methods? O

12.10 Watkins’s Q()\) to Tree-Backup()\)

Several methods have been proposed over the years to extend Q-learning to eligibility
traces. The original is Watkins’s Q()), which decays its eligibility traces in the usual way
as long as a greedy action was taken, then cuts the traces to zero after the first non-greedy
action. The backup diagram for Watkins’s Q(A) is shown in Figure 12.12. In Chapter 6,
we unified Q-learning and Expected Sarsa in the off-policy version of the latter, which
includes Q-learning as a special case, and generalizes it to arbitrary target policies, and
in the previous section of this chapter we completed our treatment of Expected Sarsa by
generalizing it to off-policy eligibility traces. In Chapter 7, however, we distinguished
n-step Expected Sarsa from n-step Tree Backup, where the latter retained the property
of not using importance sampling. It remains then to present the eligibility trace version
of Tree Backup, which we will call Tree-Backup(X), or TB(X) for short. This is arguably
the true successor to Q-learning because it retains its appealing absence of importance
sampling even though it can be applied to off-policy data.
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Figure 12.12: The backup diagram for Watkins’s Q(\). The series of component updates ends
either with the end of the episode or with the first nongreedy action, whichever comes first.

The concept of TB(A) is straightforward. As shown in its backup diagram in Fig-
ure 12.13, the tree-backup updates of each length (from Section 7.5) are weighted in the
usual way dependent on the bootstrapping parameter A. To get the detailed equations,
with the right indices on the general bootstrapping and discounting parameters, it is
best to start with a recursive form (12.20) for the A-return using action values, and then
expand the bootstrapping case of the target after the model of (7.16):

G = Rt+1+%+1((1—/\t+1)Vt(5t+1)+)\t+1[ > m(alSe1)d(Sis,a, Wt)+7T(At+1|St+1)G?-ﬁl}

aF£Att1
= Riv1 + Y41 (Vt(stﬂ) + A1 (A1[Se41) (G?& = G(St+1, Av1, Wt)))

As per the usual pattern, it can also be written approximately (ignoring changes in the
approximate value function) as a sum of TD errors,

9] k
G~ (S, A, wi) + > 6p [ vhim(A4ilS),
k=t i=t+1

using the expectation form of the action-based TD error (12.28).
Following the same steps as in the previous section, we arrive at a special eligibility
trace update involving the target-policy probabilities of the selected actions,

z¢ = Y M7 (Ae|St)ze—1 + VQ(St, A, Wey).

)
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Figure 12.13: The backup diagram for the A version of the Tree Backup algorithm.

This, together with the usual parameter-update rule (12.7), defines the TB(A) algorithm.
Like all semi-gradient algorithms, TB(A) is not guaranteed to be stable when used with
off-policy data and with a powerful function approximator. To obtain those assurances,
TB(A) would have to be combined with one of the methods presented in the next section.

*Fxercise 12.1/ How might Double Expected Sarsa be extended to eligibility traces? [J

12.11  Stable Off-policy Methods with Traces

Several methods using eligibility traces have been proposed that achieve guarantees
of stability under off-policy training, and here we present four of the most important
using this book’s standard notation, including general bootstrapping and discounting
functions. All are based on either the Gradient-TD or the Emphatic-TD ideas presented
in Sections 11.7 and 11.8. All the algorithms assume linear function approximation,
though extensions to nonlinear function approximation can also be found in the literature.

GTD()\) is the eligibility-trace algorithm analogous to TDC, the better of the two
state-value Gradient-TD prediction algorithms discussed in Section 11.7. Its goal is to
learn a parameter w; such that 9(s,w) = w, x(s) &~ v;(s), even from data that is due to
following another policy b. Its update is

Wt+1 = Wi + O[(stSZt — Oé’)/t_,’_l(l — >\t+1) (thvt) Xt+1,
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with J7, z¢, and p; defined in the usual ways for state values (12.23) (12.25) (11.1), and
Vt+1 = V¢ —|— 66;Zt — 6 (V;rXt) Xt, (1230)

where, as in Section 11.7, v € R? is a vector of the same dimension as w, initialized to
vp = 0, and 8 > 0 is a second step-size parameter.

GQ()) is the Gradient-TD algorithm for action values with eligibility traces. Its goal
is to learn a parameter w; such that ¢(s,a, w;) = w, x(s,a) = ¢.(s,a) from off-policy
data. If the target policy is e-greedy, or otherwise biased toward the greedy policy for ¢,
then GQ(A) can be used as a control algorithm. Its update is

Wt+1 = Wi + aﬁgzt - Oé’)/t+1(1 — )‘t—‘,-l) (Z:Vt) it—&-l;

where X; is the average feature vector for S; under the target policy,

% = Y m(alS)x(St,a),

a

07 is the expectation form of the TD error, which can be written
Of = Res1 + YW/ K1 — W/ Xy,

z; is defined in the usual way for action values (12.29), and the rest is as in GTD()\),
including the update for v; (12.30).

HTD()) is a hybrid state-value algorithm combining aspects of GTD(A) and TD(A). Its
most appealing feature is that it is a strict generalization of TD()) to off-policy learning,
meaning that if the behavior policy happens to be the same as the target policy, then
HTD(A) becomes the same as TD()), which is not true for GTD(A). This is appealing
because TD(A) is often faster than GTD(A) when both algorithms converge, and TD(\)
requires setting only a single step size. HTD()) is defined by

Wip1 = Wy + adjze + « ((zt — zi’)TVt) (Xt = Yep1Xe41),
. T . .
Viy1 = vy + 07z — (zf vt) (Xt — Vg1 Xe41),  with vo =0,
Zy = Pt ("}/t)\tzt_l + Xt), with Z_q = 0,

2 =y Nzl | +x,  withzb | =0,

where 8 > 0 again is a second step-size parameter. In addition to the second set of
weights, v;, HTD(A) also has a second set of eligibility traces, z. These are conventional
accumulating eligibility traces for the behavior policy and become equal to z; if all the p;
are 1, which causes the last term in the w; update to be zero and the overall update to
reduce to TD(A).

Emphatic TD()) is the extension of the one-step Emphatic-TD algorithm (Sections
9.11 and 11.8) to eligibility traces. The resultant algorithm retains strong off-policy
convergence guarantees while enabling any degree of bootstrapping, albeit at the cost of
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high variance and potentially slow convergence. Emphatic TD()\) is defined by

Wit1 = Wi + adizs
O0p = Rip1 + Y41 Wi Xep1 — W X
7 = pe (Y MZio1 + Myx;), withz_q =0,
My, =M\, + (1= M)F,
Fy = piav Fio1 + L, with Fy =i(So),

where M; > 0 is the general form of emphasis, F; > 0 is termed the followon trace, and
I; > 0 is the interest, as described in Section 11.8. Note that M, like §;, is not really an
additional memory variable. It can be removed from the algorithm by substituting its
definition into the eligibility-trace equation. Pseudocode and software for the true online
version of Emphatic-TD(\) are available on the web (Sutton, 2015b).

In the on-policy case (p, =1, for all t), Emphatic-TD()) is similar to conventional
TD(A), but still significantly different. In fact, whereas Emphatic-TD()\) is guaranteed
to converge for all state-dependent A functions, TD(A) is not. TD()) is guaranteed
convergent only for all constant A. See Yu’s counterexample (Ghiassian, Rafiee, and
Sutton, 2016).

12.12 Implementation Issues

It might at first appear that tabular methods using eligibility traces are much more
complex than one-step methods. A naive implementation would require every state (or
state—action pair) to update both its value estimate and its eligibility trace on every time
step. This would not be a problem for implementations on single-instruction, multiple-
data, parallel computers or in plausible artificial neural network (ANN) implementations,
but it is a problem for implementations on conventional serial computers. Fortunately,
for typical values of A and ~ the eligibility traces of almost all states are almost always
nearly zero; only those states that have recently been visited will have traces significantly
greater than zero and only these few states need to be updated to closely approximate
these algorithms.

In practice, then, implementations on conventional computers may keep track of and
update only the few traces that are significantly greater than zero. Using this trick, the
computational expense of using traces in tabular methods is typically just a few times
that of a one-step method. The exact multiple of course depends on A and v and on the
expense of the other computations. Note that the tabular case is in some sense the worst
case for the computational complexity of eligibility traces. When function approximation
is used, the computational advantages of not using traces generally decrease. For example,
if ANNs and backpropagation are used, then eligibility traces generally cause only a
doubling of the required memory and computation per step. Truncated A-return methods
(Section 12.3) can be computationally efficient on conventional computers though they
always require some additional memory.
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12.13 Conclusions

Eligibility traces in conjunction with TD errors provide an efficient, incremental way of
shifting and choosing between Monte Carlo and TD methods. The n-step methods of
Chapter 7 also enabled this, but eligibility trace methods are more general, often faster to
learn, and offer different computational complexity tradeoffs. This chapter has offered an
introduction to the elegant, emerging theoretical understanding of eligibility traces for on-
and off-policy learning and for variable bootstrapping and discounting. One aspect of this
elegant theory is true online methods, which exactly reproduce the behavior of expensive
ideal methods while retaining the computational congeniality of conventional TD methods.
Another aspect is the possibility of derivations that automatically convert from intuitive
forward-view methods to more efficient incremental backward-view algorithms. We
illustrated this general idea in a derivation that started with a classical, expensive Monte
Carlo algorithm and ended with a cheap incremental non-TD implementation using the
same novel eligibility trace used in true online TD methods.

As we mentioned in Chapter 5, Monte Carlo methods may have advantages in non-
Markov tasks because they do not bootstrap. Because eligibility traces make TD methods
more like Monte Carlo methods, they also can have advantages in these cases. If one
wants to use TD methods because of their other advantages, but the task is at least
partially non-Markov, then the use of an eligibility trace method is indicated. Eligibility
traces are the first line of defense against both long-delayed rewards and non-Markov
tasks.

By adjusting A, we can place eligibility trace methods anywhere along a continuum
from Monte Carlo to one-step TD methods. Where shall we place them? We do not yet
have a good theoretical answer to this question, but a clear empirical answer appears to
be emerging. On tasks with many steps per episode, or many steps within the half-life of
discounting, it appears significantly better to use eligibility traces than not to (e.g., see
Figure 12.14). On the other hand, if the traces are so long as to produce a pure Monte
Carlo method, or nearly so, then performance degrades sharply. An intermediate mixture
appears to be the best choice. Eligibility traces should be used to bring us toward Monte
Carlo methods, but not all the way there. In the future it may be possible to more finely
vary the trade-off between TD and Monte Carlo methods by using variable A, but at
present it is not clear how this can be done reliably and usefully.

Methods using eligibility traces require more computation than one-step methods, but
in return they offer significantly faster learning, particularly when rewards are delayed by
many steps. Thus it often makes sense to use eligibility traces when data are scarce and
cannot be repeatedly processed, as is often the case in online applications. On the other
hand, in offline applications in which data can be generated cheaply, perhaps from an
inexpensive simulation, then it often does not pay to use eligibility traces. In these cases
the objective is not to get more out of a limited amount of data, but simply to process as
much data as possible as quickly as possible. In these cases the speedup per datum due to
traces is typically not worth their computational cost, and one-step methods are favored.
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Figure 12.14: The effect of A on reinforcement learning performance in four different test
problems. In all cases, performance is generally best (a lower number in the graph) at an
intermediate value of A\. The two left panels are applications to simple continuous-state control
tasks using the Sarsa(\) algorithm and tile coding, with either replacing or accumulating traces
(Sutton, 1996). The upper-right panel is for policy evaluation on a random walk task using TD())
(Singh and Sutton, 1996). The lower right panel is unpublished data for the pole-balancing task
(Example 3.4) from an earlier study (Sutton, 1984).
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Bibliographical and Historical Remarks

Eligibility traces came into reinforcement learning via the fecund ideas of Klopf (1972).
Our use of eligibility traces is based on Klopf’s work (Sutton, 1978a, 1978b, 1978¢; Barto
and Sutton, 1981a, 1981b; Sutton and Barto, 1981a; Barto, Sutton, and Anderson, 1983;
Sutton, 1984). We may have been the first to use the term “eligibility trace” (Sutton
and Barto, 1981a). The idea that stimuli produce after effects in the nervous system
that are important for learning is very old (see Chapter 14). Some of the earliest uses of
eligibility traces were in the actor—critic methods discussed in Chapter 13 (Barto, Sutton,
and Anderson, 1983; Sutton, 1984).

12.1 Compound updates were called “complex backups” in the first edition of this
book.

The A-return and its error-reduction properties were introduced by Watkins (1989)
and further developed by Jaakkola, Jordan, and Singh (1994). The random walk
results in this and subsequent sections are new to this text, as are the terms
“forward view” and “backward view.” The notion of a A-return algorithm was
introduced in the first edition of this text. The more refined treatment presented
here was developed in conjunction with Harm van Seijen (e.g., van Seijen and
Sutton, 2014).

12.2  TD(A) with accumulating traces was introduced by Sutton (1988, 1984). Con-
vergence in the mean was proved by Dayan (1992), and with probability 1 by
many researchers, including Peng (1993), Dayan and Sejnowski (1994), Tsitsiklis
(1994), and Gurvits, Lin, and Hanson (1994). The bound on the error of the
asymptotic A-dependent solution of linear TD()) is due to Tsitsiklis and Van
Roy (1997).

12.3  Truncated TD methods were developed by Cichosz (1995) and van Seijen (2016).

12.4  The idea of redoing updates was extensively developed by van Seijen, originally
under the name “best-match learning” (van Seijen, 2011; van Seijen, Whiteson,
van Hasselt, and Weiring, 2011).

12.5  True online TD()) is primarily due to Harm van Seijen (van Seijen and Sutton,
2014; van Seijen et al., 2016) though some of its key ideas were discovered
independently by Hado van Hasselt (personal communication). The name “dutch
traces” is in recognition of the contributions of both scientists.

Replacing traces are due to Singh and Sutton (1996).
12.6  The material in this section is from van Hasselt and Sutton (2015).
12.7  Sarsa()\) with accumulating traces was first explored as a control method by

Rummery and Niranjan (1994; Rummery, 1995). True online Sarsa(\) was
introduced by van Seijen and Sutton (2014). The algorithm on page 307 was
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12.8

12.9

12.10

12.11

adapted from van Seijen et al. (2016). The Mountain Car results were made for
this text, except for Figure 12.11 which is adapted from van Seijen and Sutton
(2014).

Perhaps the first published discussion of variable A was by Watkins (1989), who
pointed out that the cutting off of the update sequence (Figure 12.12) in his
Q()\) when a nongreedy action was selected could be implemented by temporarily
setting A to 0.

Variable A was introduced in the first edition of this text. The roots of variable ~y
are in the work on options (Sutton, Precup, and Singh, 1999) and its precursors
(Sutton, 1995a), becoming explicit in the GQ(A) paper (Maei and Sutton, 2010),
which also introduced some of these recursive forms for the A-returns.

A different notion of variable A has been developed by Yu (2012).

Off-policy eligibility traces were introduced by Precup et al. (2000, 2001), then
further developed by Bertsekas and Yu (2009), Maei (2011; Maei and Sutton,
2010), Yu (2012), and by Sutton, Mahmood, Precup, and van Hasselt (2014).
The last reference in particular gives a powerful forward view for off-policy TD
methods with general state-dependent A and . The presentation here seems to
be new.

This section ends with an elegant Expected Sarsa(\) algorithm. Although it is
a natural algorithm, to our knowledge it has not previously been described or
tested in the literature.

Watkins’s Q(A) is due to Watkins (1989). The tabular, episodic, offline version
has been proven convergent by Munos, Stepleton, Harutyunyan, and Bellemare
(2016). Alternative Q(A) algorithms were proposed by Peng and Williams (1994,
1996) and by Sutton, Mahmood, Precup, and van Hasselt (2014). Tree Backup(A)
is due to Precup, Sutton, and Singh (2000).

GTD(A) is due to Maei (2011). GQ(X\) is due to Maei and Sutton (2010).
HTD(A) is due to White and White (2016) based on the one-step HTD algorithm
introduced by Hackman (2012). The latest developments in the theory of
Gradient-TD methods are by Yu (2017). Emphatic TD(\) was introduced by
Sutton, Mahmood, and White (2016), who proved its stability. Yu (2015, 2016)
proved its convergence, and the algorithm was developed further by Hallak et
al. (2015, 2016).



Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods
have been action-value methods; they learned the values of actions and then selected
actions based on their estimated action values'; their policies would not even exist without
the action-value estimates. In this chapter we consider methods that instead learn a
parameterized policy that can select actions without consulting a value function. A value
function may still be used to learn the policy parameter, but is not required for action
selection. We use the notation 8 € R? for the policy’s parameter vector. Thus we write
m(als,0) = Pr{A;=a | St=s,0; =0} for the probability that action a is taken at time ¢
given that the environment is in state s at time ¢ with parameter 8. If a method uses a
learned value function as well, then the value function’s weight vector is denoted w € R?
as usual, as in 0(s,w).

In this chapter we consider methods for learning the policy parameter based on the
gradient of some scalar performance measure J(0) with respect to the policy parameter.
These methods seek to maximize performance, so their updates approximate gradient
ascent in J:

—

011 =0 +aVJ(0y), (13.1)

where V/J(E) € R? is a stochastic estimate whose expectation approximates the gradient
of the performance measure with respect to its argument 6;. All methods that follow
this general schema we call policy gradient methods, whether or not they also learn an
approximate value function. Methods that learn approximations to both policy and value
functions are often called actor—critic methods, where ‘actor’ is a reference to the learned
policy, and ‘critic’ refers to the learned value function, usually a state-value function.
First we treat the episodic case, in which performance is defined as the value of the start
state under the parameterized policy, before going on to consider the continuing case, in
which performance is defined as the average reward rate, as in Section 10.3. In the end,
we are able to express the algorithms for both cases in very similar terms.

IThe lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes through
many of the same steps, in the single-state bandit case, as we go through here for full MDPs. Reviewing
that section would be good preparation for fully understanding this chapter.
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13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as
m(als, @) is differentiable with respect to its parameters, that is, as long as Vr(a|s, 8) (the
column vector of partial derivatives of 7(al|s, @) with respect to the components of 8) exists
and is finite for all s € 8§, a € A(s), and 6 € RY. In practice, to ensure exploration we
generally require that the policy never becomes deterministic (i.e., that w(als,8) € (0, 1),
for all s,a,60). In this section we introduce the most common parameterization for
discrete action spaces and point out the advantages it offers over action-value methods.
Policy-based methods also offer useful ways of dealing with continuous action spaces, as
we describe later in Section 13.7.

If the action space is discrete and not too large, then a natural and common kind of
parameterization is to form parameterized numerical preferences h(s,a,0) € R for each
state—action pair. The actions with the highest preferences in each state are given the
highest probabilities of being selected, for example, according to an exponential soft-max
distribution:

eh(s,a,@)

h(s,0,0)
Doy €00

where e =~ 2.71828 is the base of the natural logarithm. Note that the denominator here
is just what is required so that the action probabilities in each state sum to one. We call
this kind of policy parameterization soft-max in action preferences.

The action preferences themselves can be parameterized arbitrarily. For example, they
might be computed by a deep artificial neural network (ANN), where 6 is the vector
of all the connection weights of the network (as in the AlphaGo system described in
Section 16.6). Or the preferences could simply be linear in features,

h(s,a,0) = 0"x(s,a), (13.3)

m(als, 0) = (13.2)

using feature vectors x(s,a) € RY constructed by any of the methods described in
Chapter 9.

One advantage of parameterizing policies according to the soft-max in action preferences
is that the approximate policy can approach a deterministic policy, whereas with e-greedy
action selection over action values there is always an € probability of selecting a random
action. Of course, one could select according to a soft-max distribution based on action
values, but this alone would not allow the policy to approach a deterministic policy.
Instead, the action-value estimates would converge to their corresponding true values,
which would differ by a finite amount, translating to specific probabilities other than 0 and
1. If the soft-max distribution included a temperature parameter, then the temperature
could be reduced over time to approach determinism, but in practice it would be difficult
to choose the reduction schedule, or even the initial temperature, without more prior
knowledge of the true action values than we would like to assume. Action preferences
are different because they do not approach specific values; instead they are driven to
produce the optimal stochastic policy. If the optimal policy is deterministic, then the
preferences of the optimal actions will be driven infinitely higher than all suboptimal
actions (if permitted by the parameterization).
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A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two different things with specific probabilities, such as when bluffing in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is —1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is difficult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1,0] " and x(s, left) = [0,1] T,
for all s. An action-value method with e-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 — &/2 on all steps
or choosing left with the same high probability on all time steps. If € = 0.1, then
these two policies achieve a value (at the start state) of less than —44 and —82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about —11.6.

-11.6

ool optimal
stochastic

policy

40+
£-greedy right
J(8) = vro (S)

-60 -

= G
80 4 e-greedy left

-100 _I 1 1 1 1 ]

0 0.1 0.2 013 0?4 015 0?6 017 08 09 1
probability of right action

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Simsek, Algérta, and Kothiyal, 2016).
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Finally, we note that the choice of policy parameterization is sometimes a good way
of injecting prior knowledge about the desired form of the policy into the reinforcement
learning system. This is often the most important reason for using a policy-based learning
method.

FEzercise 13.1 Use your knowledge of the gridworld and its dynamics to determine an
exact symbolic expression for the optimal probability of selecting the right action in
Example 13.1. ]

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over e-greedy action
selection, there is also an important theoretical advantage. With continuous policy
parameterization the action probabilities change smoothly as a function of the learned
parameter, whereas in e-greedy selection the action probabilities may change dramatically
for an arbitrarily small change in the estimated action values, if that change results in a
different action having the maximal value. Largely because of this stronger convergence
guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables
policy-gradient methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(8), differently
and thus have to be treated separately to some extent. Nevertheless, we will try to
present both cases uniformly, and we develop a notation so that the major theoretical
results can be described with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure
as the value of the start state of the episode. We can simplify the notation without
losing any meaningful generality by assuming that every episode starts in some particular
(non-random) state so. Then, in the episodic case we define performance as

J(0) = vry(s0), (13.4)

where v, is the true value function for mg, the policy determined by 6. From here on in
our discussion we will assume no discounting (v = 1) for the episodic case, although for
completeness we do include the possibility of discounting in the boxed algorithms.
With function approximation, it may seem challenging to change the policy parameter
in a way that ensures improvement. The problem is that performance depends on both
the action selections and the distribution of states in which those selections are made,
and that both of these are affected by the policy parameter. Given a state, the effect of
the policy parameter on the actions, and thus on reward, can be computed in a relatively
straightforward way from knowledge of the parameterization. But the effect of the policy
on the state distribution is a function of the environment and is typically unknown. How
can we estimate the performance gradient with respect to the policy parameter when the
gradient depends on the unknown effect of policy changes on the state distribution?
Fortunately, there is an excellent theoretical answer to this challenge in the form of
the policy gradient theorem, which provides an analytic expression for the gradient of


mitchell
Highlight

mitchell
Highlight


18.2. The Policy Gradient Theorem 325

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy
gradient theorem from first principles. To keep the notation simple, we leave it
implicit in all cases that 7 is a function of 8, and all gradients are also implicitly
with respect to 8. First note that the gradient of the state-value function can be
written in terms of the action-value function as

, forallse8 (Exercise 3.18)

a

Vur(s) =V [Zw(cws)qw(s,a)

= -Vﬂ(a|s)qﬂ(s, a) + m(als)Vax (s, a)} (product rule of calculus)

= Z :Vﬂ'(a|s)qﬂ(s, a) + 7(a|s)V Zp(s', r|s,a)(r + Uﬂ(s’))}

(Exercise 3.19 and Equation 3.2)

=2 Vr(als)an(s, @) + nlals) p(s |5, )Ver(s)| (Ba.34)

= Z :vﬂ(a|s)qﬂ(s, a) +7(als) Z (5|5, ) (unrolling)
D [Vr(@)an (s ) (el |) 3 pls" ') V()]

= 25) r(s—x, k,m Zw alz) gz (z,a),

after repeated unrolling, where Pr(s— x, k, 7) is the probability of transitioning
from state s to state x in k steps under policy 7. It is then immediate that

V.J(8) = Vvx(s0)
-5 (ki Pr(so s, k,7r>> S Vr(als)gn (s, )
S ) 3 Valalshas () (box page 199)
DY D 3 Vr(al)oe (5.0
= 30l S te) B (el (Ba. 9.3)
x Sgu@ > Vrlals)ae) (QED.)
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performance with respect to the policy parameter (which is what we need to approximate
for gradient ascent (13.1)) that does not involve the derivative of the state distribution.
The policy gradient theorem for the episodic case establishes that

VJ(60) x Zu(s)Zqﬂ(s,a)Vﬂ(abﬂ), (13.5)

where the gradients are column vectors of partial derivatives with respect to the compo-
nents of 8, and 7 denotes the policy corresponding to parameter vector 8. The symbol o
here means “proportional to”. In the episodic case, the constant of proportionality is the
average length of an episode, and in the continuing case it is 1, so that the relationship is
actually an equality. The distribution p here (as in Chapters 9 and 10) is the on-policy
distribution under 7 (see page 199). The policy gradient theorem is proved for the
episodic case in the box on the previous page.

13.3 REINFORCE: Monte Carlo Policy Gradient

We are now ready to derive our first policy-gradient learning algorithm. Recall our overall
strategy of stochastic gradient ascent (13.1), which requires a way to obtain samples such
that the expectation of the sample gradient is proportional to the actual gradient of the
performance measure as a function of the parameter. The sample gradients need only be
proportional to the gradient because any constant of proportionality can be absorbed
into the step size «, which is otherwise arbitrary. The policy gradient theorem gives an
exact expression proportional to the gradient; all that is needed is some way of sampling
whose expectation equals or approximates this expression. Notice that the right-hand
side of the policy gradient theorem is a sum over states weighted by how often the states
occur under the target policy 7; if 7 is followed, then states will be encountered in these
proportions. Thus

VI(0) Y pu(s) Y grls,a)Vr(als,0)

=Er| Y ax(Si,a)Vr(alS:,0)] . (13.6)

We could stop here and instantiate our stochastic gradient-ascent algorithm (13.1) as

011 =0, + Y (S, a,w)Vr(alS;,0), (13.7)

where ¢ is some learned approximation to ¢,. This algorithm, which has been called
an all-actions method because its update involves all of the actions, is promising and
deserving of further study, but our current interest is the classical REINFORCE algorithm
(Willams, 1992) whose update at time ¢ involves just A, the one action actually taken at
time t.

We continue our derivation of REINFORCE by introducing A; in the same way as we
introduced S; in (13.6)—by replacing a sum over the random variable’s possible values
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by an expectation under 7, and then sampling the expectation. Equation (13.6) involves
an appropriate sum over actions, but each term is not weighted by m(a|St, 8) as is needed
for an expectation under m. So we introduce such a weighting, without changing the
equality, by multiplying and then dividing the summed terms by 7(a|S¢, @). Continuing
from (13.6), we have

[ Vr(alS;, 0
VJ(O) :Eﬂ— Zﬂ'(aSt,H)q,r(St,a)M]
r Vr(Ay|S;, 0 .
=Er _qw(St, At)m} (replacing a by the sample Ay ~ 7)
[ VTI'(At‘St7 9)
=E _— se E A = A
us -Gt 7T(At|5t, 9) ) (becaube ﬂ[Gt|St7 t] Q‘IT(Stv t))

where Gy is the return as usual. The final expression in brackets is exactly what is
needed, a quantity that can be sampled on each time step whose expectation is equal
to the gradient. Using this sample to instantiate our generic stochastic gradient ascent
algorithm (13.1) yields the REINFORCE update:

VW(At |St, 0,5)

0,,,=0 _— 7 7
1 i + aGy (A1 Sy, 60)

(13.8)

This update has an intuitive appeal. Each increment is proportional to the product of a
return G and a vector, the gradient of the probability of taking the action actually taken
divided by the probability of taking that action. The vector is the direction in parameter
space that most increases the probability of repeating the action A; on future visits
to state S;. The update increases the parameter vector in this direction proportional
to the return, and inversely proportional to the action probability. The former makes
sense because it causes the parameter to move most in the directions that favor actions
that yield the highest return. The latter makes sense because otherwise actions that are
selected frequently are at an advantage (the updates will be more often in their direction)
and might win out even if they do not yield the highest return.

Note that REINFORCE uses the complete return from time ¢, which includes all
future rewards up until the end of the episode. In this sense REINFORCE is a Monte
Carlo algorithm and is well defined only for the episodic case with all updates made in
retrospect after the episode is completed (like the Monte Carlo algorithms in Chapter 5).
This is shown explicitly in the boxed on the next page.

Notice that the update in the last line of pseudocode appears rather different from
the REINFORCE update rule (13.8). One difference is that the pseudocode uses the

compact expression V Inm(A4;|S, 0;) for the fractional vector % in (13.8). That
’ Vz

these two expressions for the vector are equivalent follows from the identity Vinz = ~*.
This vector has been given several names and notations in the literature; we will refer
to it simply as the eligibility vector. Note that it is the only place that the policy

parameterization appears in the algorithm.
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REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(a|s, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 6 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1, Ar_1, Ry, following = (:|-, )
Loop for each step of the episode t =0,1,...,T — 1:
G« Zfthrl PRy, (Gt)
0« 0+ ay'GVinnm(AS,0)

The second difference between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of 4*. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (y=1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

*Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of 4% and thus aligns with
the general algorithm given in the pseudocode. O

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

20F 4= QW ) MJW \ N’,{“"‘Y‘N‘\A’ w{r.‘,(wv‘
LA
A
" W
1Th

G 0 -40+
Total reward

on episode
averaged over 100 runs

-80+

-90+

1 1 1 1 1
1 200 400 600 800 1000
Episode

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.
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As a stochastic gradient method, REINFORCE has good theoretical convergence
properties. By construction, the expected update over an episode is in the same direction
as the performance gradient. This assures an improvement in expected performance for
sufficiently small «r, and convergence to a local optimum under standard stochastic approx-
imation conditions for decreasing o. However, as a Monte Carlo method REINFORCE
may be of high variance and thus produce slow learning.

Ezxercise 13.8 In Section 13.1 we considered policy parameterizations using the soft-max in
action preferences (13.2) with linear action preferences (13.3). For this parameterization,
prove that the eligibility vector is

Vinn(als,0) = x(s,a) — Y _ m(b|s,0)x(s,b), (13.9)
b

using the definitions and elementary calculus. (]

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the
action value to an arbitrary baseline b(s):

VI(0) o 3 uls) Z(qﬁ(s, a) — b(s))Vw(a|s,0). (13.10)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains valid because the subtracted quantity is zero:

Zb(s)Vw(a|s,0) = b(S)VZW(a|S,0) = b(s)V1 = 0.

The policy gradient theorem with baseline (13.10) can be used to derive an update
rule using similar steps as in the previous section. The update rule that we end up with
is a new version of REINFORCE that includes a general baseline:

VW(At|St7 Ot)

. 13.11
7T(At|St,0t) ( )

9,54,.1 = 0t + O((Gt — b(St))
Because the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update unchanged,
but it can have a large effect on its variance. For example, we saw in Section 2.8 that an
analogous baseline can significantly reduce the variance (and thus speed the learning) of
gradient bandit algorithms. In the bandit algorithms the baseline was just a number (the
average of the rewards seen so far), but for MDPs the baseline should vary with state.
In some states all actions have high values and we need a high baseline to differentiate
the higher valued actions from the less highly valued ones; in other states all actions will
have low values and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, ©(S;,w), where
w € R™ is a weight vector learned by one of the methods presented in previous chapters.
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Because REINFORCE is a Monte Carlo method for learning the policy parameter, 6,
it seems natural to also use a Monte Carlo method to learn the state-value weights, w.
A complete pseudocode algorithm for REINFORCE with baseline using such a learned
state-value function as the baseline is given in the box below.

REINFORCE with Baseline (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization 7 (als, 8)

Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 6 € RY and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7—-1, Ar—_1, Rr, following = (|-, 6)
Loop for each step of the episode t =0,1,...,T — 1:
G Vi7" Re (eh)
0+ G — 0(Sp,w)
W w+ aVIVo(S,,w)
0+ 0+ ae’yt5V1n7r(At|St, 0)

This algorithm has two step sizes, denoted o and a™ (where af is the a in (13.11)).
Choosing the step size for values (here V) is relatively easy; in the linear case we have
rules of thumb for setting it, such as a™ = O.l/IE[HVﬁ(St,W)HZ} (see Section 9.6). It is
much less clear how to set the step size for the policy parameters, o, whose best value
depends on the range of variation of the rewards and on the policy parameterization.

10, REINFORCE with basellne a? =277

A e o < U (50)
A\‘H “«MMHW
20| WMM
1 IW“
M REINFORCE
13
Go 40} | f e
Total reward ‘
on episode *
averaged over 100 runs [
-60- ¢
-sod
_90 C 1 1 1 1 1 J
1 200 400 600 800 1000

Episode

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).
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Figure 13.2 compares the behavior of REINFORCE with and without a baseline on
the short-corridor gridword (Example 13.1). Here the approximate state-value function
used in the baseline is 9(s,w) = w. That is, w is a single component, w.

13.5 Actor—Critic Methods

Although the REINFORCE-with-baseline method learns both a policy and a state-value
function, we do not consider it to be an actor—critic method because its state-value function
is used only as a baseline, not as a critic. That is, it is not used for bootstrapping (updating
the value estimate for a state from the estimated values of subsequent states), but only
as a baseline for the state whose estimate is being updated. This is a useful distinction,
for only through bootstrapping do we introduce bias and an asymptotic dependence
on the quality of the function approximation. As we have seen, the bias introduced
through bootstrapping and reliance on the state representation is often beneficial because
it reduces variance and accelerates learning. REINFORCE with baseline is unbiased
and will converge asymptotically to a local minimum, but like all Monte Carlo methods
it tends to learn slowly (produce estimates of high variance) and to be inconvenient
to implement online or for continuing problems. As we have seen earlier in this book,
with temporal-difference methods we can eliminate these inconveniences, and through
multi-step methods we can flexibly choose the degree of bootstrapping. In order to gain
these advantages in the case of policy gradient methods we use actor—critic methods with
a bootstrapping critic.

First consider one-step actor—critic methods, the analog of the TD methods introduced
in Chapter 6 such as TD(0), Sarsa(0), and Q-learning. The main appeal of one-step
methods is that they are fully online and incremental, yet avoid the complexities of
eligibility traces. They are a special case of the eligibility trace methods, and not as
general, but easier to understand. One-step actor—critic methods replace the full return
of REINFORCE (13.11) with the one-step return (and use a learned state-value function
as the baseline) as follows:

v’]T(At |St, Bt)

0,1 =6, + Ol(Gt:tJrl - @(St,W)> (A5, 60) (13.12)
. N Vn(A]Se, 0

=0, + a(RtH + (St q1,W) — U(St,W)) M (13.13)

— 0, + a6, LT A5 80) (13.14)

t 7T(At|St, Bt) '

The natural state-value-function learning method to pair with this is semi-gradient TD(0).
Pseudocode for the complete algorithm is given in the box at the top of the next page.
Note that it is now a fully online, incremental algorithm, with states, actions, and rewards
processed as they occur and then never revisited.
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One-step Actor—Critic (episodic), for estimating g ~ 7.

Input: a differentiable policy parameterization 7(a|s, 0)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a® > 0, ™ > 0
Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ (-]S,0)
Take action A, observe S’, R
0+ R+~v0(S",w) — 9(S,w) (if S is terminal, then 9(S’,w) = 0)

W W+ a¥oVo(S,w)
0+ 0+a°I6VInm(A|S,0)
I —~I

S« 9

The generalizations to the forward view of n-step methods and then to a A-return
algorithm are straightforward. The one-step return in (13.12) is merely replaced by Gy.p4n
or G7 respectively. The backward view of the A-return algorithm is also straightforward,
using separate eligibility traces for the actor and critic, each after the patterns in
Chapter 12. Pseudocode for the complete algorithm is given in the box below.

Actor—Critic with Eligibility Traces (episodic), for estimating 7y ~ 7.

Input: a differentiable policy parameterization 7(als, 8)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: trace-decay rates A% € [0,1], A" € [0, 1]; step sizes a® > 0, a™ > 0
Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

z% « 0 (d’-component eligibility trace vector)

z% < 0 (d-component eligibility trace vector)

I+1
Loop while S is not terminal (for each time step):
A~ w(]S,0)
Take action A, observe S’, R
d+— R+~v0(S5",w) — o(S,w) (if S’ is terminal, then 9(S’,w) = 0)

zV < yAVzY + V(S w)

2% < y\%2° + IVIn~w(A|S, )
w4 w+aVizW

0« 0+a%5z°

I ~I

S5
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13.6 Policy Gradient for Continuing Problems

As discussed in Section 10.3, for continuing problems without episode boundaries we need
to define performance in terms of the average rate of reward per time step:

h
Co 1
Jim_ o > E[R: | So, Ag:t—1~7] (13.15)

t=1
= lim E[R; | So, Ag:t—1~7]
t—o0

= Z/j,(s) Zw(a|s) ZP(SI7T|87 a)r,

=
2
I
=
3
[

where p is the steady-state distribution under m, u(s) = lim;_, o Pr{S;=s|4g.:~7},
which is assumed to exist and to be independent of Sy (an ergodicity assumption).
Remember that this is the special distribution under which, if you select actions according
to 7, you remain in the same distribution:

Zu(s) Zﬂ(a|s, 0)p(s'|s,a) = pu(s'), for all s’ € 8. (13.16)

Complete pseudocode for the actor—critic algorithm in the continuing case (backward
view) is given in the box below.

Actor—Critic with Eligibility Traces (continuing), for estimating 79 ~ .

Input: a differentiable policy parameterization 7(a|s, 0)

Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: AV € [0, 1], 2 e [0,1], a¥ >0, a® >0, af >0
Initialize R € R (e.g., to 0)

Initialize state-value weights w € R? and policy parameter 6 € RY (e.g., to 0)
Initialize S € 8 (e.g., to sg)

z% < 0 (d-component eligibility trace vector)
z% « 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~ 7(-]5,0)

Take action A, observe S/, R

§+ R—R+9(S" w)—9(S,w)

R+ R+afts

zV < \VzV + Vi(S,w)

2% < \°2% + Vin7(A|S, 0)

W w+aVizV

0+ 0+ a%52°

S« 5




334 Chapter 13: Policy Gradient Methods

Naturally, in the continuing case, we define values, v, (s) = E.[G:|S:=s] and ¢ (s, a) =
E,[Gt|S:=s, Ay =a], with respect to the differential return:

Gt = Rt+1 — T(?T) + Rt+2 - T‘(ﬂ') + Rt+3 - ’I‘(TF) + e (1317)
With these alternate definitions, the policy gradient theorem as given for the episodic

case (13.5) remains true for the continuing case. A proof is given in the box on the next
page. The forward and backward view equations also remain the same.

Proof of the Policy Gradient Theorem (continuing case)

The proof of the policy gradient theorem for the continuing case begins similarly
to the episodic case. Again we leave it implicit in all cases that 7 is a function
of 8 and that the gradients are with respect to 6. Recall that in the continuing
case J(0) = r(w) (13.15) and that v, and ¢, denote values with respect to the
differential return (13.17). The gradient of the state-value function can be written,
for any s € 8, as

, forallses (Exercise 3.18)

Vg (s) = V [Zw<a|s>qﬂ<s,a)

a

= Z -V7T(a|s)q7r (s,a) + 7(als)Vgx (s, a)} (product rule of calculus)

= Z :Vﬂ(a|8)q,r(s, a) + m(a|s)V Zp(s', r|s,a)(r —r(6) + vﬁ(s’))]

a s'r

= Z :Vﬁ(a|s)qﬂ(s, a) + m(als)[-Vr(0) + Zp(s’|s, a)Vvﬂ(s’)H .

After re-arranging terms, we obtain

vr(o) =" [vﬂ(a|s)qﬂ(s, a) +m(als) > p(s's, a)wﬂ(s')} — Vur(s).

a

Notice that the left-hand side can be written V.J(0), and that it does not depend
on s. Thus the right-hand side does not depend on s either, and we can safely sum
it over all s € 8, weighted by p(s), without changing it (because ) u(s) = 1):

VJ(0) = Z w(s) (Z {Vw(a\s)qﬂ(s, a) + m(als) Zp(s/ |s, a)Vv,T(s/)] - Vv,,(s))

a S

= 3" uls) Y V(als)ga (s, a)
+ 37 () Y wlals) S p(s'[5,0)Vor(s') — 3 ) Von(s)
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=Y u(s) D Vr(als)x(s, a)
+ 2 ) Lo n(ela)n(s |, 0) Von(s) = 3 (e} Vo)

p(s’) (13.16)
:Z“ ZVWG| 5)qx (s, a) +Z,u YV (s Z“ )V (s
S
= uls) ZVW als)qx (s, a). Q.E.D.
S a

13.7 Policy Parameterization for Continuous Actions

Policy-based methods offer practical ways of dealing with large actions spaces, even
continuous spaces with an infinite number of actions. Instead of computing learned
probabilities for each of the many actions, we instead learn statistics of the probability
distribution. For example, the action set might be the real numbers, with actions chosen
from a normal (Gaussian) distribution.

The probability density function for the normal distribution is conventionally written

plr) = — ! exp<W> , (13.18)

2m 202

where 1 and o here are the mean and stan-

dard deviation of the normal distribution, 1o ST
and of course 7 here is just the number [ \ s
m & 3.14159. The probability density func- °f #=0, 0°=50,—]
tions for several different means and stan- L / \ fe2 708 =
dard deviations are shown to the right. The °°f / \ R
value p(z) is the density of the probability | / \
at x, not the probability. It can be greater L ]
than 1; it is the total area under p(x) that o, / AN
must sum to 1. In general, one can take B /f T\\ :
the integral under p(z) for any range of z oo === ‘J —— \ ‘ ‘\$
-5 -4 -3 -2 -1 0 1 2 3 4

values to get the probability of = falling
within that range.

To produce a policy parameterization, the policy can be defined as the normal proba-
bility density over a real-valued scalar action, with mean and standard deviation given
by parametric function approximators that depend on the state. That is,

- 1 x _(a*:u(sao))z
wlols.0) =~ e (SR ) (13.19)

where ;1 : 8 xRY - Rand o : $xRY — R are two parameterized function approximators.

X
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To complete the example we need only give a form for these approximators. For this we
divide the policy’s parameter vector into two parts, 6 = [6,, 0,]", one part to be used
for the approximation of the mean and one part for the approximation of the standard
deviation. The mean can be approximated as a linear function. The standard deviation
must always be positive and is better approximated as the exponential of a linear function.
Thus

u(s,0) = HMTXH(S) and o(s,0) = eXp(OUTxU(s)) , (13.20)

where x,,(s) and x,(s) are state feature vectors perhaps constructed by one of the methods
described in Chapter 9. With these definitions, all the algorithms described in the rest of
this chapter can be applied to learn to select real-valued actions.

Ezercise 13.4 Show that for the gaussian policy parameterization (13.19) the eligibility
vector has the following two parts:

Vr(als,8,) 1

Vinn(als,0,) = Tals.0) 000 (a—

5,0))x,(s), and

Vinn(als,8,) = V:((C?';’g)") - <(“ 0(’;(50’)2)) - 1) X, (5). 0

Exercise 13.5 A Bernoulli-logistic unit is a stochastic neuron-like unit used in some ANNs
(Section 9.6). Its input at time ¢ is a feature vector x(S;); its output, Ay, is a random
variable having two values, 0 and 1, with Pr{A4; = 1} = P, and Pr{A; = 0} = 1 — P, (the
Bernoulli distribution). Let h(s,0,80) and h(s,1,0) be the preferences in state s for the
unit’s two actions given policy parameter 6. Assume that the difference between the
action preferences is given by a weighted sum of the unit’s input vector, that is, assume
that h(s,1,0) — h(s,0,0) = 07 x(s), where 0 is the unit’s weight vector.

(a) Show that if the exponential soft-max distribution (13.2) is used to convert action
preferences to policies, then P, = 7(1|S;,0;) = 1/(1 + exp(—86,"x(S;))) (the logistic
function).

(b) What is the Monte-Carlo REINFORCE update of 8; to 8;41 upon receipt of return
G?

(c) Express the eligibility VInn(als, @) for a Bernoulli-logistic unit, in terms of a, x(s),
and 7(als, @) by calculating the gradient.

Hint: separately for each action compute the derivative of the logarithm first with respect
to P, = m(als, 6;), combine the two results into one expression that depends on a and P,
and then use the chain rule, noting that the derivative of the logistic function f(x) is

f@)(1 = f(z)). 0
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13.8 Summary

Prior to this chapter, this book focused on action-value methods—meaning methods that
learn action values and then use them to determine action selections. In this chapter, on
the other hand, we considered methods that learn a parameterized policy that enables
actions to be taken without consulting action-value estimates. In particular, we have
considered policy-gradient methods—meaning methods that update the policy parameter
on each step in the direction of an estimate of the gradient of performance with respect
to the policy parameter.

Methods that learn and store a policy parameter have many advantages. They can
learn specific probabilities for taking the actions. They can learn appropriate levels
of exploration and approach deterministic policies asymptotically. They can naturally
handle continuous action spaces. All these things are easy for policy-based methods but
awkward or impossible for e-greedy methods and for action-value methods in general. In
addition, on some problems the policy is just simpler to represent parametrically than
the value function; these problems are more suited to parameterized policy methods.

Parameterized policy methods also have an important theoretical advantage over
action-value methods in the form of the policy gradient theorem, which gives an exact
formula for how performance is affected by the policy parameter that does not involve
derivatives of the state distribution. This theorem provides a theoretical foundation for
all policy gradient methods.

The REINFORCE method follows directly from the policy gradient theorem. Adding
a state-value function as a baseline reduces REINFORCE’s variance without introducing
bias. Using the state-value function for bootstrapping introduces bias but is often
desirable for the same reason that bootstrapping TD methods are often superior to Monte
Carlo methods (substantially reduced variance). The state-value function assigns credit
to—critizes—the policy’s action selections, and accordingly the former is termed the critic
and the latter the actor, and these overall methods are termed actor—critic methods.

Overall, policy-gradient methods provide a significantly different set of strengths and
weaknesses than action-value methods. Today they are less well understood in some
respects, but a subject of excitement and ongoing research.

Bibliographical and Historical Remarks

Methods that we now see as related to policy gradients were actually some of the earliest
to be studied in reinforcement learning (Witten, 1977; Barto, Sutton, and Anderson, 1983;
Sutton, 1984; Williams, 1987, 1992) and in predecessor fields (Phansalkar and Thathachar,
1995). They were largely supplanted in the 1990s by the action-value methods that are
the focus of the other chapters of this book. In recent years, however, attention has
returned to actor—critic methods and to policy-gradient methods in general. Among the
further developments beyond what we cover here are natural-gradient methods (Amari,
1998; Kakade, 2002, Peters, Vijayakumar and Schaal, 2005; Peters and Schall, 2008; Park,
Kim and Kang, 2005; Bhatnagar, Sutton, Ghavamzadeh and Lee, 2009; see Grondman,
Busoniu, Lopes and Babuska, 2012), deterministic policy gradient methods (Silver et al.,
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2014), off-policy policy-gradient methods (Degris, White, and Sutton, 2012; Maei, 2018),
and entropy regularization (see Schulman, Chen, and Abbeel, 2017). Major applications
include acrobatic helicopter autopilots and AlphaGo (Section 16.6).

Our presentation in this chapter is based primarily on that by Sutton, McAllester,
Singh, and Mansour (2000), who introduced the term “policy gradient methods.” A useful
overview is provided by Bhatnagar et al. (2009). One of the earliest related works is
by Aleksandrov, Sysoyev, and Shemeneva (1968). Thomas (2014) first realized that the
factor of 7%, as specified in the boxed algorithms of this chapter, was needed in the case
of discounted episodic problems.

13.1  Example 13.1 and the results with it in this chapter were developed with Eric
Graves.

13.2  The policy gradient theorem here and on page 334 was first obtained by Marbach
and Tsitsiklis (1998, 2001) and then independently by Sutton et al. (2000). A
similar expression was obtained by Cao and Chen (1997). Other early results
are due to Konda and Tsitsiklis (2000, 2003), Baxter and Bartlett (2001), and
Baxter, Bartlett, and Weaver (2001). Some additional results are developed by
Sutton, Singh, and McAllester (2000).

13.3 REINFORCE is due to Williams (1987, 1992). Phansalkar and Thathachar
(1995) proved both local and global convergence theorems for modified versions
of REINFORCE algorithms.

The all-actions algorithm was first presented in an unpublished but widely
circulated incomplete paper (Sutton, Singh, and McAllester, 2000) and then
developed further by Ciosek and Whiteson (2017, 2018), who termed it “expected
policy gradients,” and by Asadi, Allen, Roderick, Mohamed, Konidaris, and
Littman (2017) who called it “mean actor critic.”

13.4  The baseline was introduced in Williams’s (1987, 1992) original work. Greensmith,
Bartlett, and Baxter (2004) analyzed an arguably better baseline (see Dick, 2015).
Thomas and Brunskill (2017) argue that an action-dependent baseline can be
used without incurring bias.

13.5—6 Actor—critic methods were among the earliest to be investigated in reinforcement
learning (Witten, 1977; Barto, Sutton, and Anderson, 1983; Sutton, 1984). The
algorithms presented here are based on the work of Degris, White, and Sutton
(2012). Actor—critic methods are sometimes referred to as advantage actor—critic
methods in the literature.

13.7  The first to show how continuous actions could be handled this way appears
to have been Williams (1987, 1992). The figure on page 335 is adapted from
Wikipedia.



Part III: Looking Deeper

In this last part of the book we look beyond the standard reinforcement learning ideas
presented in the first two parts of the book to briefly survey their relationships with
psychology and neuroscience, a sampling of reinforcement learning applications, and some
of the active frontiers for future reinforcement learning research.
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Chapter 14

Psychology

In previous chapters we developed ideas for algorithms based on computational con-
siderations alone. In this chapter we look at some of these algorithms from another
perspective: the perspective of psychology and its study of how animals learn. The goals
of this chapter are, first, to discuss ways that reinforcement learning ideas and algorithms
correspond to what psychologists have discovered about animal learning, and second, to
explain the influence reinforcement learning is having on the study of animal learning.
The clear formalism provided by reinforcement learning that systemizes tasks, returns,
and algorithms is proving to be enormously useful in making sense of experimental data,
in suggesting new kinds of experiments, and in pointing to factors that may be critical to
manipulate and to measure. The idea of optimizing return over the long term that is
at the core of reinforcement learning is contributing to our understanding of otherwise
puzzling features of animal learning and behavior.

Some of the correspondences between reinforcement learning and psychological theories
are not surprising because the development of reinforcement learning drew inspiration
from psychological learning theories. However, as developed in this book, reinforcement
learning explores idealized situations from the perspective of an artificial intelligence
researcher or engineer, with the goal of solving computational problems with efficient
algorithms, rather than to replicate or explain in detail how animals learn. As a result,
some of the correspondences we describe connect ideas that arose independently in their
respective fields. We believe these points of contact are specially meaningful because they
expose computational principles important to learning, whether it is learning by artificial
or by natural systems.

For the most part, we describe correspondences between reinforcement learning and
learning theories developed to explain how animals like rats, pigeons, and rabbits learn
in controlled laboratory experiments. Thousands of these experiments were conducted
throughout the 20th century, and many are still being conducted today. Although
sometimes dismissed as irrelevant to wider issues in psychology, these experiments probe
subtle properties of animal learning, often motivated by precise theoretical questions.
As psychology shifted its focus to more cognitive aspects of behavior, that is, to mental
processes such as thought and reasoning, animal learning experiments came to play
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less of a role in psychology than they once did. But this experimentation led to the
discovery of learning principles that are elemental and widespread throughout the animal
kingdom, principles that should not be neglected in designing artificial learning systems.
In addition, as we shall see, some aspects of cognitive processing connect naturally to the
computational perspective provided by reinforcement learning.

This chapter’s final section includes references relevant to the connections we discuss as
well as to connections we neglect. We hope this chapter encourages readers to probe all
of these connections more deeply. Also included in this final section is a discussion of how
the terminology used in reinforcement learning relates to that of psychology. Many of
the terms and phrases used in reinforcement learning are borrowed from animal learning
theories, but the computational/engineering meanings of these terms and phrases do not
always coincide with their meanings in psychology.

14.1 Prediction and Control

The algorithms we describe in this book fall into two broad categories: algorithms
for prediction and algorithms for control.! These categories arise naturally in solution
methods for the reinforcement learning problem presented in Chapter 3. In many ways
these categories respectively correspond to categories of learning extensively studied
by psychologists: classical, or Pavlovian, conditioning and instrumental, or operant,
conditioning. These correspondences are not completely accidental because of psychology’s
influence on reinforcement learning, but they are nevertheless striking because they connect
ideas arising from different objectives.

The prediction algorithms presented in this book estimate quantities that depend
on how features of an agent’s environment are expected to unfold over the future. We
specifically focus on estimating the amount of reward an agent can expect to receive over
the future while it interacts with its environment. In this role, prediction algorithms are
policy evaluation algorithms, which are integral components of algorithms for improving
policies. But prediction algorithms are not limited to predicting future reward; they can
predict any feature of the environment (see, for example, Modayil, White, and Sutton,
2014). The correspondence between prediction algorithms and classical conditioning rests
on their common property of predicting upcoming stimuli, whether or not those stimuli
are rewarding (or punishing).

The situation in an instrumental, or operant, conditioning experiment is different.
Here, the experimental apparatus is set up so that an animal is given something it likes
(a reward) or something it dislikes (a penalty) depending on what the animal did. The
animal learns to increase its tendency to produce rewarded behavior and to decrease its
tendency to produce penalized behavior. The reinforcing stimulus is said to be contingent
on the animal’s behavior, whereas in classical conditioning it is not (although it is difficult
to remove all behavior contingencies in a classical conditioning experiment). Instrumental
conditioning experiments are like those that inspired Thorndike’s Law of Effect that

1What control means for us is different from what it typically means in animal learning theories; there
the environment controls the agent instead of the other way around. See our comments on terminology
at the end of this chapter.
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we briefly discuss in Chapter 1. Control is at the core of this form of learning, which
corresponds to the operation of reinforcement learning’s policy-improvement algorithms.

Thinking of classical conditioning in terms of prediction, and instrumental conditioning
in terms of control, is a starting point for connecting our computational view of rein-
forcement learning to animal learning, but in reality, the situation is more complicated
than this. There is more to classical conditioning than prediction; it also involves action,
and so is a mode of control, sometimes called Pavlovian control. Further, classical and
instrumental conditioning interact in interesting ways, with both sorts of learning likely
being engaged in most experimental situations. Despite these complications, aligning the
classical/instrumental distinction with the prediction/control distinction is a convenient
first approximation in connecting reinforcement learning to animal learning.

In psychology, the term reinforcement is used to describe learning in both classical and
instrumental conditioning. Originally referring only to the strengthening of a pattern of
behavior, it is frequently also used for the weakening of a pattern of behavior. A stimulus
considered to be the cause of the change in behavior is called a reinforcer, whether or
not it is contingent on the animal’s previous behavior. At the end of this chapter we
discuss this terminology in more detail and how it relates to terminology used in machine
learning.

14.2 Classical Conditioning

While studying the activity of the digestive system, the celebrated Russian physiologist
Ivan Pavlov found that an animal’s innate responses to certain triggering stimuli can
come to be triggered by other stimuli that are quite unrelated to the inborn triggers. His
experimental subjects were dogs that had undergone minor surgery to allow the intensity
of their salivary reflex to be accurately measured. In one case he describes, the dog did
not salivate under most circumstances, but about 5 seconds after being presented with
food it produced about six drops of saliva over the next several seconds. After several
repetitions of presenting another stimulus, one not related to food, in this case the sound
of a metronome, shortly before the introduction of food, the dog salivated in response to
the sound of the metronome in the same way it did to the food. “The activity of the
salivary gland has thus been called into play by impulses of sound—a stimulus quite
alien to food” (Pavlov, 1927, p. 22). Summarizing the significance of this finding, Pavlov
wrote:

It is pretty evident that under natural conditions the normal animal must
respond not only to stimuli which themselves bring immediate benefit or
harm, but also to other physical or chemical agencies—waves of sound, light,
and the like—which in themselves only signal the approach of these stimuli;
though it is not the sight and sound of the beast of prey which is in itself
harmful to the smaller animal, but its teeth and claws. (Pavlov, 1927, p. 14)

Connecting new stimuli to innate reflexes in this way is now called classical, or Pavlovian,
conditioning. Pavlov (or more exactly, his translators) called inborn responses (e.g.,
salivation in his demonstration described above) “unconditioned responses” (URs), their
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natural triggering stimuli (e.g., food) “unconditioned stimuli” (USs), and new responses
triggered by predictive stimuli (e.g., here also salivation) “conditioned responses” (CRs).
A stimulus that is initially neutral, meaning that it does not normally elicit strong
responses (e.g., the metronome sound), becomes a “conditioned stimulus” (CS) as the
animal learns that it predicts the US and so comes to produce a CR in response to the CS.
These terms are still used in describing classical conditioning experiments (though better
translations would have been “conditional” and “unconditional” instead of conditioned
and unconditioned). The US is called a reinforcer because it reinforces producing a CR
in response to the CS.

The arzangemefnt 1of §tirlrluli 1Cr11 ‘FWO Delay Conditioning
common types of classical condition-
ing experiments is shown to the right. L l_—
In delay conditioning, the CS extends us |—|
throughout the interstimulus interval, or
ISI, which is the time interval between
the CS onset and the US onset (with Ff S| _)\
the CS ending when the US ends in a
common version shown here). In trace  Trace Conditioning
conditioning, the US begins after the CS L,—|
ends, and the time interval between CS
offset and US onset is called the trace USs |—|
interval.

The salivation of Pavlov’s dogs to the
sound of a metronome is just one exam-
ple of classical conditioning, which has
been intensively studied across many response systems of many species of animals. URs
are often preparatory in some way, like the salivation of Pavlov’s dog, or protective in
some way, like an eye blink in response to something irritating to the eye, or freezing
in response to seeing a predator. Experiencing the CS-US predictive relationship over
a series of trials causes the animal to learn that the CS predicts the US so that the
animal can respond to the CS with a CR that prepares the animal for, or protects it
from, the predicted US. Some CRs are similar to the UR but begin earlier and differ in
ways that increase their effectiveness. In one intensively studied type of experiment, for
example, a tone CS reliably predicts a puff of air (the US) to a rabbit’s eye, triggering a
UR consisting of the closure of a protective inner eyelid called the nictitating membrane.
After one or more trials, the tone comes to trigger a CR consisting of membrane closure
that begins before the air puff and eventually becomes timed so that peak closure occurs
just when the air puff is likely to occur. This CR, being initiated in anticipation of the
air puff and appropriately timed, offers better protection than simply initiating closure
as a reaction to the irritating US. The ability to act in anticipation of important events
by learning about predictive relationships among stimuli is so beneficial that it is widely
present across the animal kingdom.
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14.2.1 Blocking and Higher-order Conditioning

Many interesting properties of classical conditioning have been observed in experiments.
Beyond the anticipatory nature of CRs, two widely observed properties figured prominently
in the development of classical conditioning models: blocking and higher-order conditioning.
Blocking occurs when an animal fails to learn a CR when a potential CS is presented along
with another CS that had been used previously to condition the animal to produce that
CR. For example, in the first stage of a blocking experiment involving rabbit nictitating
membrane conditioning, a rabbit is first conditioned with a tone CS and an air puff US
to produce the CR of closing its nictitating membrane in anticipation of the air puff. The
experiment’s second stage consists of additional trials in which a second stimulus, say
a light, is added to the tone to form a compound tone/light CS followed by the same
air puff US. In the experiment’s third phase, the second stimulus alone—the light—is
presented to the rabbit to see if the rabbit has learned to respond to it with a CR. It
turns out that the rabbit produces very few, or no, CRs in response to the light: learning
to the light had been blocked by the previous learning to the tone.? Blocking results like
this challenged the idea that conditioning depends only on simple temporal contiguity,
that is, that a necessary and sufficient condition for conditioning is that a US frequently
follows a CS closely in time. In the next section we describe the Rescorla—Wagner model
(Rescorla and Wagner, 1972) that offered an influential explanation for blocking.

Higher-order conditioning occurs when a previously-conditioned CS acts as a US
in conditioning another initially neutral stimulus. Pavlov described an experiment in
which his assistant first conditioned a dog to salivate to the sound of a metronome that
predicted a food US, as described above. After this stage of conditioning, a number of
trials were conducted in which a black square, to which the dog was initially indifferent,
was placed in the dog’s line of vision followed by the sound of the metronome—and
this was not followed by food. In just ten trials, the dog began to salivate merely upon
seeing the black square, despite the fact that the sight of it had never been followed by
food. The sound of the metronome itself acted as a US in conditioning a salivation CR
to the black square CS. This was second-order conditioning. If the black square had
been used as a US to establish salivation CRs to another otherwise neutral CS, it would
have been third-order conditioning, and so on. Higher-order conditioning is difficult to
demonstrate, especially above the second order, in part because a higher-order reinforcer
loses its reinforcing value due to not being repeatedly followed by the original US during
higher-order conditioning trials. But under the right conditions, such as intermixing
first-order trials with higher-order trials or by providing a general energizing stimulus,
higher-order conditioning beyond the second order can be demonstrated. As we describe
below, the T'D model of classical conditioning uses the bootstrapping idea that is central
to our approach to extend the Rescorla—Wagner model’s account of blocking to include
both the anticipatory nature of CRs and higher-order conditioning.

Higher-order instrumental conditioning occurs as well. In this case, a stimulus that

2Comparison with a control group is necessary to show that the previous conditioning to the tone is
responsible for blocking learning to the light. This is done by trials with the tone/light CS but with no
prior conditioning to the tone. Learning to the light in this case is unimpaired. Moore and Schmajuk
(2008) give a full account of this procedure.
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consistently predicts primary reinforcement becomes a reinforcer itself, where reinforce-
ment is primary if its rewarding or penalizing quality has been built into the animal by
evolution. The predicting stimulus becomes a secondary reinforcer, or more generally, a
higher-order or conditioned reinforcer—the latter being a better term when the predicted
reinforcing stimulus is itself a secondary, or an even higher-order, reinforcer. A condi-
tioned reinforcer delivers conditioned reinforcement: conditioned reward or conditioned
penalty. Conditioned reinforcement acts like primary reinforcement in increasing an
animal’s tendency to produce behavior that leads to conditioned reward, and to decrease
an animal’s tendency to produce behavior that leads to conditioned penalty. (See our
comments at the end of this chapter that explain how our terminology sometimes differs,
as it does here, from terminology used in psychology.)

Conditioned reinforcement is a key phenomenon that explains, for instance, why we
work for the conditioned reinforcer money, whose worth derives solely from what is
predicted by having it. In actor—critic methods described in Section 13.5 (and discussed
in the context of neuroscience in Sections 15.7 and 15.8), the critic uses a TD method
to evaluate the actor’s policy, and its value estimates provide conditioned reinforcement
to the actor, allowing the actor to improve its policy. This analog of higher-order
instrumental conditioning helps address the credit-assignment problem mentioned in
Section 1.7 because the critic gives moment-by-moment reinforcement to the actor when
the primary reward signal is delayed. We discuss this more below in Section 14.4.

14.2.2 The Rescorla—Wagner Model

Rescorla and Wagner created their model mainly to account for blocking. The core
idea of the Rescorla-Wagner model is that an animal only learns when events violate
its expectations, in other words, only when the animal is surprised (although without
necessarily implying any conscious expectation or emotion). We first present Rescorla and
Wagner’s model using their terminology and notation before shifting to the terminology
and notation we use to describe the TD model.

Here is how Rescorla and Wagner described their model. The model adjusts the
“associative strength” of each component stimulus of a compound CS, which is a number
representing how strongly or reliably that component is predictive of a US. When
a compound CS consisting of several component stimuli is presented in a classical
conditioning trial, the associative strength of each component stimulus changes in a way
that depends on an associative strength associated with the entire stimulus compound,
called the “aggregate associative strength,” and not just on the associative strength of
each component itself.

Rescorla and Wagner considered a compound CS AX, consisting of component stimuli
A and X, where the animal may have already experienced stimulus A, and stimulus X
might be new to the animal. Let Vi, Vx, and Vax respectively denote the associative
strengths of stimuli A, X, and the compound AX. Suppose that on a trial the compound
CS AX is followed by a US, which we label stimulus Y. Then the associative strengths of
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the stimulus components change according to these expressions:

AVp = aaBy(Ry — Vax)
AVx = axfy(Ry — Vax),

where ap By and axfy are the step-size parameters, which depend on the identities of
the CS components and the US, and Ry is the asymptotic level of associative strength
that the US Y can support. (Rescorla and Wagner used A here instead of R, but we
use R to avoid confusion with our use of A and because we usually think of this as the
magnitude of a reward signal, with the caveat that the US in classical conditioning is not
necessarily rewarding or penalizing.) A key assumption of the model is that the aggregate
associative strength Vax is equal to Va 4+ Vx. The associative strengths as changed by
these As become the associative strengths at the beginning of the next trial.

To be complete, the model needs a response-generation mechanism, which is a way
of mapping values of Vs to CRs. Because this mapping would depend on details of
the experimental situation, Rescorla and Wagner did not specify a mapping but simply
assumed that larger V's would produce stronger or more likely CRs, and that negative
Vs would mean that there would be no CRs.

The Rescorla—Wagner model accounts for the acquisition of CRs in a way that explains
blocking. As long as the aggregate associative strength, Vax, of the stimulus compound
is below the asymptotic level of associative strength, Ry, that the US Y can support, the
prediction error Ry —Vax is positive. This means that over successive trials the associative
strengths Va and Vx of the component stimuli increase until the aggregate associative
strength Vax equals Ry, at which point the associative strengths stop changing (unless the
US changes). When a new component is added to a compound CS to which the animal has
already been conditioned, further conditioning with the augmented compound produces
little or no increase in the associative strength of the added CS component because the
error has already been reduced to zero, or to a low value. The occurrence of the US is
already predicted nearly perfectly, so little or no error—or surprise—is introduced by the
new CS component. Prior learning blocks learning to the new component.

To transition from Rescorla and Wagner’s model to the TD model of classical condi-
tioning (which we just call the TD model), we first recast their model in terms of the
concepts that we are using throughout this book. Specifically, we match the notation
we use for learning with linear function approximation (Section 9.4), and we think of
the conditioning process as one of learning to predict the “magnitude of the US” on a
trial on the basis of the compound CS presented on that trial, where the magnitude of
a US Y is the Ry of the Rescorla—Wagner model as given above. We also introduce
states. Because the Rescorla—Wagner model is a trial-level model, meaning that it deals
with how associative strengths change from trial to trial without considering any details
about what happens within and between trials, we do not have to consider how states
change during a trial until we present the full TD model in the following section. Instead,
here we simply think of a state as a way of labeling a trial in terms of the collection of
component CSs that are present on the trial.

Therefore, assume that trial-type, or state, s is described by a real-valued vector of
features x(s) = (21(s), ¥2(s), ..., z4(s)) " where z;(s) = 1 if CS;, the i'" component of a
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compound CS, is present on the trial and 0 otherwise. Then if the d-dimensional vector
of associative strengths is w, the aggregate associative strength for trial-type s is

o(s,w) = w ' x(s). (14.1)

This corresponds to a wvalue estimate in reinforcement learning, and we think of it as the
US prediction.

Now temporally let ¢ denote the number of a complete trial and not its usual meaning
as a time step (we revert to ¢’s usual meaning when we extend this to the TD model
below), and assume that S; is the state corresponding to trial ¢. Conditioning trial ¢
updates the associative strength vector w; to w41 as follows:

Wit1 = Wi + Oé(StX(St), (142)

where « is the step-size parameter, and—because here we are describing the Rescorla—
Wagner model—4; is the prediction error

6t = Rt — f}(St,wt). (143)

R; is the target of the prediction on trial ¢, that is, the magnitude of the US, or in Rescorla
and Wagner’s terms, the associative strength that the US on the trial can support. Note
that because of the factor x(S;) in (14.2), only the associative strengths of CS components
present on a trial are adjusted as a result of that trial. You can think of the prediction
error as a measure of surprise, and the aggregate associative strength as the animal’s
expectation that is violated when it does not match the target US magnitude.

From the perspective of machine learning, the Rescorla—Wagner model is an error-
correction supervised learning rule. It is essentially the same as the Least Mean Square
(LMS), or Widrow-Hoff, learning rule (Widrow and Hoff, 1960) that finds the weights—
here the associative strengths—that make the average of the squares of all the errors as
close to zero as possible. It is a “curve-fitting,” or regression, algorithm that is widely
used in engineering and scientific applications (see Section 9.4).3

The Rescorla—Wagner model was very influential in the history of animal learning
theory because it showed that a “mechanistic” theory could account for the main facts
about blocking without resorting to more complex cognitive theories involving, for
example, an animal’s explicit recognition that another stimulus component had been
added and then scanning its short-term memory backward to reassess the predictive
relationships involving the US. The Rescorla—Wagner model showed how traditional
contiguity theories of conditioning—that temporal contiguity of stimuli was a necessary
and sufficient condition for learning—could be adjusted in a simple way to account for
blocking (Moore and Schmajuk, 2008).

The Rescorla-—Wagner model provides a simple account of blocking and some other
features of classical conditioning, but it is not a complete or perfect model of classical

3The only differences between the LMS rule and the Rescorla-Wagner model are that for LMS the
input vectors x; can have any real numbers as components, and—at least in the simplest version of the
LMS rule—the step-size parameter o does not depend on the input vector or the identity of the stimulus
setting the prediction target.
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conditioning. Different ideas account for a variety of other observed effects, and progress
is still being made toward understanding the many subtleties of classical conditioning.
The TD model, which we describe next, though also not a complete or perfect model
model of classical conditioning, extends the Rescorla—Wagner model to address how
within-trial and between-trial timing relationships among stimuli can influence learning
and how higher-order conditioning might arise.

14.2.3 The TD Model

The TD model is a real-time model, as opposed to a trial-level model like the Rescorla—
Wagner model. A single step ¢ in the Rescorla—Wagner model represents an entire
conditioning trial. The model does not apply to details about what happens during the
time a trial is taking place, or what might happen between trials. Within each trial an
animal might experience various stimuli whose onsets occur at particular times and that
have particular durations. These timing relationships strongly influence learning. The
Rescorla—Wagner model also does not include a mechanism for higher-order conditioning,
whereas for the TD model, higher-order conditioning is a natural consequence of the
bootstrapping idea that is at the base of TD algorithms.

To describe the TD model we begin with the formulation of the Rescorla—Wagner
model above, but ¢ now labels time steps within or between trials instead of complete
trials. Think of the time between ¢ and ¢ + 1 as a small time interval, say .01 second, and
think of a trial as a sequences of states, one associated with each time step, where the
state at step t now represents details of how stimuli are represented at ¢ instead of just
a label for the CS components present on a trial. In fact, we can completely abandon
the idea of trials. From the point of view of the animal, a trial is just a fragment of its
continuing experience interacting with its world. Following our usual view of an agent
interacting with its environment, imagine that the animal is experiencing an endless
sequence of states s, each represented by a feature vector x(s). That said, it is still often
convenient to refer to trials as fragments of time during which patterns of stimuli repeat
in an experiment.

State features are not restricted to describing the external stimuli that an animal
experiences; they can describe neural activity patterns that external stimuli produce in
an animal’s brain, and these patterns can be history-dependent, meaning that they can
be persistent patterns produced by sequences of external stimuli. Of course, we do not
know exactly what these neural activity patterns are, but a real-time model like the TD
model allows one to explore the consequences on learning of different hypotheses about
the internal representations of external stimuli. For these reasons, the TD model does
not commit to any particular state representation. In addition, because the TD model
includes discounting and eligibility traces that span time intervals between stimuli, the
model also makes it possible to explore how discounting and eligibility traces interact with
stimulus representations in making predictions about the results of classical conditioning
experiments.

Below we describe some of the state representations that have been used with the
TD model and some of their implications, but for the moment we stay agnostic about
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the representation and just assume that each state s is represented by a feature vector
x(s) = (z1(s),22(8),...,7,(s)) . Then the aggregate associative strength corresponding
to a state s is given by (14.1), the same as for the Rescorla-Wgner model, but the TD
model updates the associative strength vector, w, differently. With ¢ now labeling a time
step instead of a complete trial, the TD model governs learning according to this update:

Wit1 = Wi + aétzt, (144)

which replaces x;(5;) in the Rescorla-Wagner update (14.2) with z;, a vector of eligibility
traces, and instead of the d; of (14.3), here J; is a TD error:

5t = Rt+1 + ’Y@(St+1,wt) — ’IA)(St,Wt), (145)

where v is a discount factor (between 0 and 1), R; is the prediction target at time ¢, and
0(Sp41,w¢) and (S, w,) are aggregate associative strengths at ¢ + 1 and ¢ as defined by
(14.1).

Each component 7 of the eligibility-trace vector z; increments or decrements according
to the component z;(S;) of the feature vector x(S;), and otherwise decays with a rate
determined by vy A:

Ziy1 = ’)/>\Zt + X(St). (146)

Here )\ is the usual eligibility trace decay parameter.

Note that if v = 0, the TD model reduces to the Rescorla—Wagner model with the
exceptions that: the meaning of t is different in each case (a trial number for the
Rescorla—Wagner model and a time step for the TD model), and in the TD model there
is a one-time-step lead in the prediction target R. The TD model is equivalent to the
backward view of the semi-gradient TD(A) algorithm with linear function approximation
(Chapter 12), except that R; in the model does not have to be a reward signal as it does
when the TD algorithm is used to learn a value function for policy-improvement.

14.2.4 TD Model Simulations

Real-time conditioning models like the TD model are interesting primarily because they
make predictions for a wide range of situations that cannot be represented by trial-level
models. These situations involve the timing and durations of conditionable stimuli, the
timing of these stimuli in relation to the timing of the US, and the timing and shapes
of CRs. For example, the US generally must begin after the onset of a neutral stimulus
for conditioning to occur, with the rate and effectiveness of learning depending on the
inter-stimulus interval, or ISI, the interval between the onsets of the CS and the US. When
CRs appear, they generally begin before the appearance of the US and their temporal
profiles change during learning. In conditioning with compound CSs, the component
stimuli of the compound CSs may not all begin and end at the same time, sometimes
forming what is called a serial compound in which the component stimuli occur in a
sequence over time. Timing considerations like these make it important to consider how
stimuli are represented, how these representations unfold over time during and between
trials, and how they interact with discounting and eligibility traces.
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Figure 14.1: Three stimulus representations (in columns) sometimes used with the TD model.
Each row represents one element of the stimulus representation. The three representations vary
along a temporal generalization gradient, with no generalization between nearby time points in
the complete serial compound (left column) and complete generalization between nearby time
points in the presence representation (right column). The microstimulus representation occupies
a middle ground. The degree of temporal generalization determines the temporal granularity
with which US predictions are learned. Adapted with minor changes from Learning & Behavior,
Evaluating the TD Model of Classical Conditioning, volume 40, 2012, p. 311, E. A. Ludvig, R. S.
Sutton, E. J. Kehoe. With permission of Springer.

Figure 14.1 shows three of the stimulus representations that have been used in exploring
the behavior of the TD model: the complete serial compound (CSC), the microstimulus
(MS), and the presence representations (Ludvig, Sutton, and Kehoe, 2012). These
representations differ in the degree to which they force generalization among nearby time
points during which a stimulus is present.

The simplest of the representations shown in Figure 14.1 is the presence representation
in the figure’s right column. This representation has a single feature for each component
CS present on a trial, where the feature has value 1 whenever that component is present,
and 0 otherwise.* The presence representation is not a realistic hypothesis about how
stimuli are represented in an animal’s brain, but as we describe below, the TD model
with this representation can produce many of the timing phenomena seen in classical
conditioning.

For the CSC representation (left column of Figure 14.1), the onset of each external
stimulus initiates a sequence of precisely-timed short-duration internal signals that

4In our formalism, there is a different state, S¢, for each time step ¢ during a trial, and for a trial
in which a compound CS consists of n component CSs of various durations occurring at various times
throughout the trial, there is a feature, z;, for each component CS;, ¢ = 1,...,n, where z;(S¢) = 1 for
all times ¢ when the CS; is present, and equals zero otherwise.
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continues until the external stimulus ends.® This is like assuming the animal’s nervous
system has a clock that keeps precise track of time during stimulus presentations; it is
what engineers call a “tapped delay line.” Like the presence representation, the CSC
representation is unrealistic as a hypothesis about how the brain internally represents
stimuli, but Ludvig et al. (2012) call it a “useful fiction” because it can reveal details of
how the TD model works when relatively unconstrained by the stimulus representation.
The CSC representation is also used in most TD models of dopamine-producing neurons
in the brain, a topic we take up in Chapter 15. The CSC representation is often viewed
as an essential part of the TD model, although this view is mistaken.

The MS representation (center column of Figure 14.1) is like the CSC representation
in that each external stimulus initiates a cascade of internal stimuli, but in this case the
internal stimuli—the microstimuli—are not of such limited and non-overlapping form;
they are extended over time and overlap. As time elapses from stimulus onset, different
sets of microstimuli become more or less active, and each subsequent microstimulus
becomes progressively wider in time and reaches a lower maximal level. Of course, there
are many MS representations depending on the nature of the microstimuli, and a number
of examples of MS representations have been studied in the literature, in some cases along
with proposals for how an animal’s brain might generate them (see the Bibliographic and
Historical Comments at the end of this chapter). MS representations are more realistic
than the presence or CSC representations as hypotheses about neural representations of
stimuli, and they allow the behavior of the TD model to be related to a broader collection
of phenomena observed in animal experiments. In particular, by assuming that cascades
of microstimuli are initiated by USs as well as by CSs, and by studying the significant
effects on learning of interactions between microstimuli, eligibility traces, and discounting,
the TD model is helping to frame hypotheses to account for many of the subtle phenomena
of classical conditioning and how an animal’s brain might produce them. We say more
about this below, particularly in Chapter 15 where we discuss reinforcement learning and
neuroscience.

Even with the simple presence representation, however, the TD model produces all the
basic properties of classical conditioning that are accounted for by the Rescorla—Wagner
model, plus features of conditioning that are beyond the scope of trial-level models. For
example, as we have already mentioned, a conspicuous feature of classical conditioning is
that the US generally must begin after the onset of a neutral stimulus for conditioning
to occur, and that after conditioning, the CR begins before the appearance of the US.
In other words, conditioning generally requires a positive ISI, and the CR generally
anticipates the US. How the strength of conditioning (e.g., the percentage of CRs elicited
by a CS) depends on the ISI varies substantially across species and response systems, but
it typically has the following properties: it is negligible for a zero or negative ISI, i.e., when
the US onset occurs simultaneously with, or earlier than, the CS onset (although research
has found that associative strengths sometimes increase slightly or become negative with

5In our formalism, for each CS component CS; present on a trial, and for each time step ¢ during a
trial, there is a separate feature xﬁ, where xﬁ(St/) = 1if t = ¢ for any ¢’ at which CS; is present, and
equals 0 otherwise. This is different from the CSC representation in Sutton and Barto (1990) in which
there are the same distinct features for each time step but no reference to external stimuli; hence the
name complete serial compound.
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negative ISIs); it increases to a maximum at a positive ISI where conditioning is most
effective; and it then decreases to zero after an interval that varies widely with response
systems. The precise shape of this dependency for the TD model depends on the values
of its parameters and details of the stimulus representation, but these basic features of
ISI-dependency are core properties of the TD model.

One of the theoretical issues arising
with serial-compound conditioning, that
is, conditioning with a compound CS
whose components occur in a sequence,
concerns the facilitation of remote asso-
ciations. It has been found that if the
empty trace interval between a first CS
(CSA) and the US is filled with a second
CS (CSB) to form a serial-compound
stimulus, then conditioning to CSA is
facilitated. Shown to the right is the
behavior of the TD model with the pres-
ence representation in a simulation of
such an experiment whose timing details
are shown above. Consistent with the
experimental results (Kehoe, 1982), the
model shows facilitation of both the rate
of conditioning and the asymptotic level
of conditioning of the first CS due to the
presence of the second CS.

A well-known demonstration of the
effects on conditioning of temporal re-
lationships among stimuli within a trial
is an experiment by Egger and Miller
(1962) that involved two overlapping
CSs in a delay configuration as shown
to the right (top). Although CSB was
in a better temporal relationship with
the US, the presence of CSA substan-
tially reduced conditioning to CSB as
compared to controls in which CSA was
absent. Directly to the right is shown
the same result being generated by the
TD model in a simulation of this exper-
iment with the presence representation.

The TD model accounts for blocking
because it is an error-correcting learn-
ing rule like the Rescorla-Wagner model.
Beyond accounting for basic blocking re-
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sults, however, the TD model predicts (with the presence representation and more complex

representations as well) that blocking is reversed if the blocked stimulus is moved earlier

in time so that its onset occurs before the

onset.of the blocking .stlmulus ghke CSA in csa

the diagram to the right). This feature of IR e I
csB ‘

the TD model’s behavior deserves attention v

because it had not been observed at the us : I—l_
time of the model’s introduction. Recall e 2 S6C — € 2 56C '
that in blocking, if an animal has already A sec
learned that one CS predicts a US, then 1.8 [ pryg e

learning that a newly-added second CS also
predicts the US is much reduced, i.e., is
blocked. But if the newly-added second CS WCSB
begins earlier than the pretrained CS, then— CSA PRESENT
according to the TD model—learning to the

newly-added CS is not blocked. In fact, as
training continues and the newly-added CS TRIALS

gains associative strength, the pretrained

CS loses associative strength. The behavior Figure 14.2: Temporal primacy overriding
of the TD model under these conditions blocking in the TD model.

is shown in the lower part of Figure 14.2.

This simulation experiment differed from the Egger-Miller experiment (bottom of the
preceding page) in that the shorter CS with the later onset was given prior training
until it was fully associated with the US. This surprising prediction led Kehoe, Schreurs,
and Graham (1987) to conduct the experiment using the well-studied rabbit nictitating
membrane preparation. Their results confirmed the model’s prediction, and they noted
that non-TD models have considerable difficulty explaining their data.

With the TD model, an earlier predictive stimulus takes precedence over a later
predictive stimulus because, like all the prediction methods described in this book, the
TD model is based on the backing-up or bootstrapping idea: updates to associative
strengths shift the strengths at a particular state toward the strength at later states.
Another consequence of bootstrapping is that the TD model provides an account of higher-
order conditioning, a feature of classical conditioning that is beyond the scope of the
Rescoral-Wagner and similar models. As we described above, higher-order conditioning
is the phenomenon in which a previously-conditioned CS can act as a US in conditioning
another initially neutral stimulus. Figure 14.3 shows the behavior of the TD model (again
with the presence representation) in a higher-order conditioning experiment—in this case
it is second-order conditioning. In the first phase (not shown in the figure), CSB is trained
to predict a US so that its associative strength increases, here to 1.65. In the second
phase, CSA is paired with CSB in the absence of the US, in the sequential arrangement
shown at the top of the figure. CSA acquires associative strength even though it is never
paired with the US. With continued training, CSA’s associative strength reaches a peak
and then decreases because the associative strength of CSB, the secondary reinforcer,
decreases so that it loses its ability to provide secondary reinforcement. CSB’s associative
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I strength decreases because the US does not
e occur in these higher-order conditioning tri-
. als. These are extinction trials for CSB
'4— 4 soc —&i4— 4 s6C—B because its predictive relationship to the
US is disrupted so that its ability to act as
a reinforcer decreases. This same pattern
is seen in animal experiments. This extinc-
tion of conditioned reinforcement in higher-
w order conditioning trials makes it difficult
to demonstrate higher-order conditioning

1.6

csA unless the original predictive relationships
.00 . are periodically refreshed by occasionally
) 50 inserting first-order trials.

TRIALS The TD model produces an analog of

second- and higher-order conditioning be-

Figure 14.3: Second-order conditioning with cause v9(S;1,w;) — 9(S;,w;) appears in
the TD model. the TD error d; (14.5). This means that as
a result of previous learning, v0(S;11,w¢)

can differ from 9(S;,w;), making §; non-zero (a temporal difference). This difference has
the same status as Ry41 in (14.5), implying that as far as learning is concerned there
is no difference between a temporal difference and the occurrence of a US. In fact, this
feature of the TD algorithm is one of the major reasons for its development, which we now
understand through its connection to dynamic programming as described in Chapter 6.
Bootstrapping values is intimately related to second-order, and higher-order, conditioning.

In the examples of the TD model’s behavior described above, we examined only the
changes in the associative strengths of the CS components; we did not look at what
the model predicts about properties of an animal’s conditioned responses (CRs): their
timing, shape, and how they develop over conditioning trials. These properties depend
on the species, the response system being observed, and parameters of the conditioning
trials, but in many experiments with different animals and different response systems, the
magnitude of the CR, or the probability of a CR, increases as the expected time of the
US approaches. For example, in classical conditioning of a rabbit’s nictitating membrane
response that we mentioned above, over conditioning trials the delay from CS onset to
when the nictitating membrane begins to move across the eye decreases over trials, and
the amplitude of this anticipatory closure gradually increases over the interval between
the CS and the US until the membrane reaches maximal closure at the expected time of
the US. The timing and shape of this CR is critical to its adaptive significance—covering
the eye too early reduces vision (even though the nictitating membrane is translucent),
while covering it too late is of little protective value. Capturing CR features like these is
challenging for models of classical conditioning.

The TD model does not include as part of its definition any mechanism for translating
the time course of the US prediction, 9(S¢,w;), into a profile that can be compared
with the properties of an animal’s CR. The simplest choice is to let the time course of
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a simulated CR equal the time course of the US prediction. In this case, features of
simulated CRs and how they change over trials depend only on the stimulus representation
chosen and the values of the model’s parameters «, «y, and .

Figure 14.4 shows the time courses of US predictions at different points during learning
with the three representations shown in Figure 14.1. For these simulations the US
occurred 25 time steps after the onset of the CS, and @ = .05, A = .95 and v = .97.
With the CSC representation (Figure 14.4 left), the curve of the US prediction formed
by the TD model increases exponentially throughout the interval between the CS and
the US until it reaches a maximum exactly when the US occurs (at time step 25). This
exponential increase is the result of discounting in the TD model learning rule. With the
presence representation (Figure 14.4 middle), the US prediction is nearly constant while
the stimulus is present because there is only one weight, or associative strength, to be
learned for each stimulus. Consequently, the TD model with the presence representation
cannot recreate many features of CR timing. With an MS representation (Figure 14.4
right), the development of the TD model’s US prediction is more complicated. After 200
trials the prediction’s profile is a reasonable approximation of the US prediction curve
produced with the CSC representation.

Complete Serial Compound Presence Microstimulus
1 1 ——Trial 200 1
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Figure 14.4: Time course of US prediction over the course of acquisition for the TD model
with three different stimulus representations. Left: With the complete serial compound (CSC),
the US prediction increases exponentially through the interval, peaking at the time of the US.
At asymptote (trial 200), the US prediction peaks at the US intensity (1 in these simulations).
Middle: With the presence representation, the US prediction converges to an almost constant
level. This constant level is determined by the US intensity and the length of the CS-US interval.
Right: With the microstimulus representation, at asymptote, the TD model approximates the
exponentially increasing time course depicted with the CSC through a linear combination of the
different microstimuli. Adapted with minor changes from Learning & Behavior, Evaluating the
TD Model of Classical Conditioning, volume 40, 2012, E. A. Ludvig, R. S. Sutton, E. J. Kehoe.
With permission of Springer.

The US prediction curves shown in Figure 14.4 were not intended to precisely match
profiles of CRs as they develop during conditioning in any particular animal experiment,
but they illustrate the strong influence that the stimulus representation has on predictions
derived from the TD model. Further, although we can only mention it here, how the
stimulus representation interacts with discounting and eligibility traces is important
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in determining properties of the US prediction profiles produced by the TD model.
Another dimension beyond what we can discuss here is the influence of different response-
generation mechanisms that translate US predictions into CR profiles; the profiles shown
in Figure 14.4 are “raw” US prediction profiles. Even without any special assumption
about how an animal’s brain might produce overt responses from US predictions, however,
the profiles in Figure 14.4 for the CSC and MS representations increase as the time of the
US approaches and reach a maximum at the time of the US, as is seen in many animal
conditioning experiments.

The TD model, when combined with particular stimulus representations and response-
generation mechanisms, is able to account for a surprisingly wide range of phenomena
observed in animal classical conditioning experiments, but it is far from being a perfect
model. To generate other details of classical conditioning the model needs to be extended,
perhaps by adding model-based elements and mechanisms for adaptively altering some of
its parameters. Other approaches to modeling classical conditioning depart significantly
from the Rescorla—Wagner-style error-correction process. Bayesian models, for example,
work within a probabilistic framework in which experience revises probability estimates.
All of these models usefully contribute to our understanding of classical conditioning.

Perhaps the most notable feature of the TD model is that it is based on a theory—the
theory we have described in this book—that suggests an account of what an animal’s
nervous system is trying to do while undergoing conditioning: it is trying to form accurate
long-term predictions, consistent with the limitations imposed by the way stimuli are
represented and how the nervous system works. In other words, it suggests a normative
account of classical conditioning in which long-term, instead of immediate, prediction is a
key feature.

The development of the TD model of classical conditioning is one instance in which the
explicit goal was to model some of the details of animal learning behavior. In addition to
its standing as an algorithm, then, TD learning is also the basis of this model of aspects
of biological learning. As we discuss in Chapter 15, TD learning has also turned out
to underlie an influential model of the activity of neurons that produce dopamine, a
chemical in the brain of mammals that is deeply involved in reward processing. These
are instances in which reinforcement learning theory makes detailed contact with animal
behavioral and neural data.

We now turn to considering correspondences between reinforcement learning and animal
behavior in instrumental conditioning experiments, the other major type of laboratory
experiment studied by animal learning psychologists.

14.3 Instrumental Conditioning

In instrumental conditioning experiments learning depends on the consequences of be-
havior: the delivery of a reinforcing stimulus is contingent on what the animal does.
In classical conditioning experiments, in contrast, the reinforcing stimulus—the US—is
delivered independently of the animal’s behavior. Instrumental conditioning is usually
considered to be the same as operant conditioning, the term B. F. Skinner (1938, 1963)
introduced for experiments with behavior-contingent reinforcement, though the experi-
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ments and theories of those who use these two terms differ in a number of ways, some of
which we touch on below. We will exclusively use the term instrumental conditioning for
experiments in which reinforcement is contingent upon behavior. The roots of instrumen-
tal conditioning go back to experiments performed by the American psychologist Edward
Thorndike one hundred years before publication of the first edition of this book.
Thorndike observed the behavior of cats
when they were placed in “puzzle boxes,”
such as the one at the right, from which
they could escape by appropriate actions. =
For example, a cat could open the door - H -
of one box by performing a sequence of T
three separate actions: depressing a plat-
form at the back of the box, pulling a string )L I
by clawing at it, and pushing a bar up or b ~
down. When first placed in a puzzle box, h HyIN
with food visible outside, all but a few of g
Thqrndike’s cats displayed. “ev-iden-t signs One of Thorndike’s puzzle boxes.
of discomfort” and extraordmamly Vigorous Reprinted from Thorndike, Animal Intelligence: An

aCtiVity “to strive instinctively to escape Experimental Study of the Associative Processes in

5 . Animals, The Psychological Review, Series of Mono-
from confinement (ThOI‘I’ldlke, 1898) graph Supplements 11(4), Macmillan, New York, 1898.

i1
11
| 1

In experiments with different cats and
boxes with different escape mechanisms, Thorndike recorded the amounts of time each
cat took to escape over multiple experiences in each box. He observed that the time
almost invariably decreased with successive experiences, for example, from 300 seconds
to 6 or 7 seconds. He described cats’ behavior in a puzzle box like this:

The cat that is clawing all over the box in her impulsive struggle will probably
claw the string or loop or button so as to open the door. And gradually all the
other non-successful impulses will be stamped out and the particular impulse
leading to the successful act will be stamped in by the resulting pleasure,
until, after many trials, the cat will, when put in the box, immediately claw
the button or loop in a definite way. (Thorndike 1898, p. 13)

These and other experiments (some with dogs, chicks, monkeys, and even fish) led
Thorndike to formulate a number of “laws” of learning, the most influential being the
Law of Effect, a version of which we quoted in Chapter 1 (page 15). This law describes
what is generally known as learning by trial and error. As mentioned in Chapter 1,
many aspects of the Law of Effect have generated controversy, and its details have been
modified over the years. Still the law—in one form or another—expresses an enduring
principle of learning.

Essential features of reinforcement learning algorithms correspond to features of animal
learning described by the Law of Effect. First, reinforcement learning algorithms are
selectional, meaning that they try alternatives and select among them by comparing their
consequences. Second, reinforcement learning algorithms are associative, meaning that
the alternatives found by selection are associated with particular situations, or states,
to form the agent’s policy. Like learning described by the Law of Effect, reinforcement
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learning is not just the process of finding actions that produce a lot of reward, but also
of connecting these actions to situations or states. Thorndike used the phrase learning
by “selecting and connecting” (Hilgard, 1956). Natural selection in evolution is a prime
example of a selectional process, but it is not associative (at least as it is commonly
understood); supervised learning is associative, but it is not selectional because it relies
on instructions that directly tell the agent how to change its behavior.

In computational terms, the Law of Effect describes an elementary way of combining
search and memory: search in the form of trying and selecting among many actions
in each situation, and memory in the form of associations linking situations with the
actions found—so far—to work best in those situations. Search and memory are essential
components of all reinforcement learning algorithms, whether memory takes the form of
an agent’s policy, value function, or environment model.

A reinforcement learning algorithm’s need to search means that it has to explore in
some way. Animals clearly explore as well, and early animal learning researchers disagreed
about the degree of guidance an animal uses in selecting its actions in situations like
Thorndike’s puzzle boxes. Are actions the result of “absolutely random, blind groping”
(Woodworth, 1938, p. 777), or is there some degree of guidance, either from prior learning,
reasoning, or other means? Although some thinkers, including Thorndike, seem to have
taken the former position, others favored more deliberate exploration. Reinforcement
learning algorithms allow wide latitude for how much guidance an agent can employ in
selecting actions. The forms of exploration we have used in the algorithms presented
in this book, such as e-greedy and upper-confidence-bound action selection, are merely
among the simplest. More sophisticated methods are possible, with the only stipulation
being that there has to be some form of exploration for the algorithms to work effectively.

The feature of our treatment of reinforcement learning allowing the set of actions
available at any time to depend on the environment’s current state echoes something
Thorndike observed in his cats’ puzzle-box behaviors. The cats selected actions from
those that they instinctively perform in their current situation, which Thorndike called
their “instinctual impulses.” First placed in a puzzle box, a cat instinctively scratches,
claws, and bites with great energy: a cat’s instinctual responses to finding itself in a
confined space. Successful actions are selected from these and not from every possible
action or activity. This is like the feature of our formalism where the action selected
from a state s belongs to a set of admissible actions, A(s). Specifying these sets is an
important aspect of reinforcement learning because it can radically simplify learning.
They are like an animal’s instinctual impulses. On the other hand, Thorndike’s cats might
have been exploring according to an instinctual context-specific ordering over actions
rather than by just selecting from a set of instinctual impulses. This is another way to
make reinforcement learning easier.

Among the most prominent animal learning researchers influenced by the Law of Effect
were Clark Hull (e.g., Hull, 1943) and B. F. Skinner (e.g., Skinner, 1938). At the center
of their research was the idea of selecting behavior on the basis of its consequences.
Reinforcement learning has features in common with Hull’s theory, which included
eligibility-like mechanisms and secondary reinforcement to account for the ability to learn
when there is a significant time interval between an action and the consequent reinforcing
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stimulus (see Section 14.4). Randomness also played a role in Hull’s theory through what
he called “behavioral oscillation” to introduce exploratory behavior.

Skinner did not fully subscribe to the memory aspect of the Law of Effect. Being averse
to the idea of associative linkages, he instead emphasized selection from spontaneously-
emitted behavior. He introduced the term “operant” to emphasize the key role of an
action’s effects on an animal’s environment. Unlike the experiments of Thorndike and
others, which consisted of sequences of separate trials, Skinner’s operant conditioning
experiments allowed animal subjects to behave for extended periods of time without
interruption. He invented the operant conditioning chamber, now called a “Skinner box,’
the most basic version of which contains a lever or key that an animal can press to obtain
a reward, such as food or water, which would be delivered according to a well-defined rule,
called a reinforcement schedule. By recording the cumulative number of lever presses
as a function of time, Skinner and his followers could investigate the effect of different
reinforcement schedules on the animal’s rate of lever-pressing. Modeling results from
experiments likes these using the reinforcement learning principles we present in this
book is not well developed, but we mention some exceptions in the Bibliographic and
Historical Remarks section at the end of this chapter.

Another of Skinner’s contributions resulted from his recognition of the effectiveness of
training an animal by reinforcing successive approximations of the desired behavior, a
process he called shaping. Although this technique had been used by others, including
Skinner himself, its significance was impressed upon him when he and colleagues were
attempting to train a pigeon to bowl by swiping a wooden ball with its beak. After
waiting for a long time without seeing any swipe that they could reinforce, they

)

... decided to reinforce any response that had the slightest resemblance to
a swipe—perhaps, at first, merely the behavior of looking at the ball—and
then to select responses which more closely approximated the final form. The
result amazed us. In a few minutes, the ball was caroming off the walls of
the box as if the pigeon had been a champion squash player. (Skinner, 1958,
p. 94)

Not only did the pigeon learn a behavior that is unusual for pigeons, it learned quickly
through an interactive process in which its behavior and the reinforcement contingencies
changed in response to each other. Skinner compared the process of altering reinforcement
contingencies to the work of a sculptor shaping clay into a desired form. Shaping is a
powerful technique for computational reinforcement learning systems as well. When it is
difficult for an agent to receive any non-zero reward signal at all, either due to sparseness
of rewarding situations or their inaccessibility given initial behavior, starting with an
easier problem and incrementally increasing its difficulty as the agent learns can be an
effective, and sometimes indispensable, strategy.

A concept from psychology that is especially relevant in the context of instrumental
conditioning is motivation, which refers to processes that influence the direction and
strength, or vigor, of behavior. Thorndike’s cats, for example, were motivated to escape
from puzzle boxes because they wanted the food that was sitting just outside. Obtaining
this goal was rewarding to them and reinforced the actions allowing them to escape. It
is difficult to link the concept of motivation, which has many dimensions, in a precise
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way to reinforcement learning’s computational perspective, but there are clear links with
some of its dimensions.

In one sense, a reinforcement learning agent’s reward signal is at the base of its
motivation: the agent is motivated to maximize the total reward it receives over the long
run. A key facet of motivation, then, is what makes an agent’s experience rewarding. In
reinforcement learning, reward signals depend on the state of the reinforcement learning
agent’s environment and the agent’s actions. Further, as pointed out in Chapter 1, the
state of the agent’s environment not only includes information about what is external to
the machine, like an organism or a robot, that houses the agent, but also what is internal
to this machine. Some internal state components correspond to what psychologists call
an animal’s motivational state, which influences what is rewarding to the animal. For
example, an animal will be more rewarded by eating when it is hungry than when it has
just finished a satisfying meal. The concept of state dependence is broad enough to allow
for many types of modulating influences on the generation of reward signals.

Value functions provide a further link to psychologists’ concept of motivation. If the
most basic motive for selecting an action is to obtain as much reward as possible, for a
reinforcement learning agent that selects actions using a value function, a more proximal
motive is to ascend the gradient of its value function, that is, to select actions expected
to lead to the most highly-valued next states (or what is essentially the same thing, to
select actions with the greatest action-values). For these agents, value functions are the
main driving force determining the direction of their behavior.

Another dimension of motivation is that an animal’s motivational state not only
influences learning, but also influences the strength, or vigor, of the animal’s behavior
after learning. For example, after learning to find food in the goal box of a maze, a hungry
rat will run faster to the goal box than one that is not hungry. This aspect of motivation
does not link so cleanly to the reinforcement learning framework we present here, but
in the Bibliographical and Historical Remarks section at the end of this chapter we cite
several publications that propose theories of behavioral vigor based on reinforcement
learning.

We turn now to the subject of learning when reinforcing stimuli occur well after the
events they reinforce. The mechanisms used by reinforcement learning algorithms to
enable learning with delayed reinforcement—eligibility traces and TD learning—closely
correspond to psychologists’ hypotheses about how animals can learn under these condi-
tions.

14.4 Delayed Reinforcement

The Law of Effect requires a backward effect on connections, and some early critics of the
law could not conceive of how the present could affect something that was in the past. This
concern was amplified by the fact that learning can even occur when there is a considerable
delay between an action and the consequent reward or penalty. Similarly, in classical
conditioning, learning can occur when US onset follows CS offset by a non-negligible time
interval. We call this the problem of delayed reinforcement, which is related to what
Minsky (1961) called the “credit-assignment problem for learning systems”: how do you
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distribute credit for success among the many decisions that may have been involved in
producing it? The reinforcement learning algorithms presented in this book include two
basic mechanisms for addressing this problem. The first is the use of eligibility traces,
and the second is the use of TD methods to learn value functions that provide nearly
immediate evaluations of actions (in tasks like instrumental conditioning experiments) or
that provide immediate prediction targets (in tasks like classical conditioning experiments).
Both of these methods correspond to similar mechanisms proposed in theories of animal
learning.

Pavlov (1927) pointed out that every stimulus must leave a trace in the nervous system
that persists for some time after the stimulus ends, and he proposed that stimulus traces
make learning possible when there is a temporal gap between the CS offset and the
US onset. To this day, conditioning under these conditions is called trace conditioning
(page 344). Assuming a trace of the CS remains when the US arrives, learning occurs
through the simultaneous presence of the trace and the US. We discuss some proposals
for trace mechanisms in the nervous system in Chapter 15.

Stimulus traces were also proposed as a means for bridging the time interval between
actions and consequent rewards or penalties in instrumental conditioning. In Hull’s
influential learning theory, for example, “molar stimulus traces” accounted for what
he called an animal’s goal gradient, a description of how the maximum strength of an
instrumentally-conditioned response decreases with increasing delay of reinforcement
(Hull, 1932, 1943). Hull hypothesized that an animal’s actions leave internal stimuli whose
traces decay exponentially as functions of time since an action was taken. Looking at the
animal learning data available at the time, he hypothesized that the traces effectively
reach zero after 30 to 40 seconds.

The eligibility traces used in the algorithms described in this book are like Hull’s
traces: they are decaying traces of past state visitations, or of past state—action pairs.
Eligibility traces were introduced by Klopf (1972) in his neuronal theory in which they
are temporally-extended traces of past activity at synapses, the connections between
neurons. Klopf’s traces are more complex than the exponentially-decaying traces our
algorithms use, and we discuss this more when we take up his theory in Section 15.9.

To account for goal gradients that extend over longer time periods than spanned
by stimulus traces, Hull (1943) proposed that longer gradients result from conditioned
reinforcement passing backwards from the goal, a process acting in conjunction with
his molar stimulus traces. Animal experiments showed that if conditions favor the
development of conditioned reinforcement during a delay period, learning does not
decrease with increased delay as much as it does under conditions that obstruct secondary
reinforcement. Conditioned reinforcement is favored if there are stimuli that regularly
occur during the delay interval. Then it is as if reward is not actually delayed because
there is more immediate conditioned reinforcement. Hull therefore envisioned that there
is a primary gradient based on the delay of the primary reinforcement mediated by
stimulus traces, and that this is progressively modified, and lengthened, by conditioned
reinforcement.

Algorithms presented in this book that use both eligibility traces and value functions
to enable learning with delayed reinforcement correspond to Hull’s hypothesis about how
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animals are able to learn under these conditions. The actor—critic architecture discussed
in Sections 13.5, 15.7, and 15.8 illustrates this correspondence most clearly. The critic uses
a TD algorithm to learn a value function associated with the system’s current behavior,
that is, to predict the current policy’s return. The actor updates the current policy based
on the critic’s predictions, or more exactly, on changes in the critic’s predictions. The
TD error produced by the critic acts as a conditioned reinforcement signal for the actor,
providing an immediate evaluation of performance even when the primary reward signal
itself is considerably delayed. Algorithms that estimate action-value functions, such as
Q-learning and Sarsa, similarly use TD learning principles to enable learning with delayed
reinforcement by means of conditioned reinforcement. The close parallel between TD
learning and the activity of dopamine producing neurons that we discuss in Chapter 15
lends additional support to links between reinforcement learning algorithms and this
aspect of Hull’s learning theory.

14.5 Cognitive Maps

Model-based reinforcement learning algorithms use environment models that have elements
in common with what psychologists call cognitive maps. Recall from our discussion of
planning and learning in Chapter 8 that by an environment model we mean anything
an agent can use to predict how its environment will respond to its actions in terms of
state transitions and rewards, and by planning we mean any process that computes a
policy from such a model. Environment models consist of two parts: the state-transition
part encodes knowledge about the effect of actions on state changes, and the reward-
model part encodes knowledge about the reward signals expected for each state or each
state—action pair. A model-based algorithm selects actions by using a model to predict
the consequences of possible courses of action in terms of future states and the reward
signals expected to arise from those states. The simplest kind of planning is to compare
the predicted consequences of collections of “imagined” sequences of decisions.

Questions about whether or not animals use environment models, and if so, what are the
models like and how are they learned, have played influential roles in the history of animal
learning research. Some researchers challenged the then-prevailing stimulus-response
(S-R) view of learning and behavior, which corresponds to the simplest model-free way
of learning policies, by demonstrating latent learning. In the earliest latent learning
experiment, two groups of rats were run in a maze. For the experimental group, there
was no reward during the first stage of the experiment, but food was suddenly introduced
into the goal box of the maze at the start of the second stage. For the control group, food
was in the goal box throughout both stages. The question was whether or not rats in the
experimental group would have learned anything during the first stage in the absence
of food reward. Although the experimental rats did not appear to learn much during
the first, unrewarded, stage, as soon as they discovered the food that was introduced
in the second stage, they rapidly caught up with the rats in the control group. It was
concluded that “during the non-reward period, the rats [in the experimental group|] were
developing a latent learning of the maze which they were able to utilize as soon as reward
was introduced” (Blodgett, 1929).
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Latent learning is most closely associated with the psychologist Edward Tolman, who
interpreted this result, and others like it, as showing that animals could learn a “cognitive
map of the environment” in the absence of rewards or penalties, and that they could use
the map later when they were motivated to reach a goal (Tolman, 1948). A cognitive map
could also allow a rat to plan a route to the goal that was different from the route the rat
had used in its initial exploration. Explanations of results like these led to the enduring
controversy lying at the heart of the behaviorist/cognitive dichotomy in psychology. In
modern terms, cognitive maps are not restricted to models of spatial layouts but are
more generally environment models, or models of an animal’s “task space” (e.g., Wilson,
Takahashi, Schoenbaum, and Niv, 2014). The cognitive map explanation of latent learning
experiments is analogous to the claim that animals use model-based algorithms, and that
environment models can be learned even without explicit rewards or penalties. Models
are then used for planning when the animal is motivated by the appearance of rewards or
penalties.

Tolman’s account of how animals learn cognitive maps was that they learn stimulus-
stimulus, or S-S, associations by experiencing successions of stimuli as they explore an
environment. In psychology this is called expectancy theory: given S-S associations, the
occurrence of a stimulus generates an expectation about the stimulus to come next. This
is much like what control engineers call system identification, in which a model of a
system with unknown dynamics is learned from labeled training examples. In the simplest
discrete-time versions, training examples are S-S’ pairs, where S is a state and S’, the
subsequent state, is the label. When S is observed, the model creates the “expectation’
that S’ will be observed next. Models more useful for planning involve actions as well,
so that examples look like SA-S’, where S’ is expected when action A is executed in
state S. It is also useful to learn how the environment generates rewards. In this case,
examples are of the form S—R or SA—R, where R is a reward signal associated with S or
the SA pair. These are all forms of supervised learning by which an agent can acquire
cognitive-like maps whether or not it receives any non-zero reward signals while exploring
its environment.

)

14.6 Habitual and Goal-directed Behavior

The distinction between model-free and model-based reinforcement learning algorithms
corresponds to the distinction psychologists make between habitual and goal-directed
control of learned behavioral patterns. Habits are behavior patterns triggered by appro-
priate stimuli and then performed more-or-less automatically. Goal-directed behavior,
according to how psychologists use the phrase, is purposeful in the sense that it is con-
trolled by knowledge of the value of goals and the relationship between actions and their
consequences. Habits are sometimes said to be controlled by antecedent stimuli, whereas
goal-directed behavior is said to be controlled by its consequences (Dickinson, 1980,
1985). Goal-directed control has the advantage that it can rapidly change an animal’s
behavior when the environment changes its way of reacting to the animal’s actions. While
habitual behavior responds quickly to input from an accustomed environment, it is unable
to quickly adjust to changes in the environment. The development of goal-directed
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behavioral control was likely a major advance in the evolution of animal intelligence.
Figure 14.5 illustrates the difference between model-free and model-based decision
strategies in a hypothetical task in which a rat has to navigate a maze that has distinctive
goal boxes, each delivering an associated reward of the magnitude shown (Figure 14.5
top). Starting at Sy, the rat has to first select left (L) or right (R) and then has to select
L or R again at Sg or Sg to reach one of the goal boxes. The goal boxes are the terminal
states of each episode of the rat’s episodic task. A model-free strategy (Figure 14.5 lower
left) relies on stored values for state—action pairs. These action values are estimates of
the highest return the rat can expect for each action taken from each (nonterminal) state.
They are obtained over many trials of running the maze from start to finish. When the
action values have become good enough estimates of the optimal returns, the rat just has
to select at each state the action with the largest action value in order to make optimal

. 3

st [ o]
L 0l | =0

s, 4] L= "
: s L< A =c
s, R 1 L =| =2
1’ R =

T

Model-Free Model-Based

Figure 14.5: Model-based and model-free strategies to solve a hypothetical sequential action-
selection problem. Top: a rat navigates a maze with distinctive goal boxes, each associated
with a reward having the value shown. Lower left: a model-free strategy relies on stored action
values for all the state—action pairs obtained over many learning trials. To make decisions the
rat just has to select at each state the action with the largest action value for that state. Lower
right: in a model-based strategy, the rat learns an environment model, consisting of knowledge
of state—action-next-state transitions and a reward model consisting of knowledge of the reward
associated with each distinctive goal box. The rat can decide which way to turn at each state
by using the model to simulate sequences of action choices to find a path yielding the highest
return. Adapted from Trends in Cognitive Science, volume 10, number 8, Y. Niv, D. Joel, and P.
Dayan, A Normative Perspective on Motivation, p. 376, 2006, with permission from Elsevier.



366 Chapter 14: Psychology

decisions. In this case, when the action-value estimates become accurate enough, the
rat selects L from S; and R from S, to obtain the maximum return of 4. A different
model-free strategy might simply rely on a cached policy instead of action values, making
direct links from S; to L and from Ss to R. In neither of these strategies do decisions
rely on an environment model. There is no need to consult a state-transition model, and
no connection is required between the features of the goal boxes and the rewards they
deliver.

Figure 14.5 (lower right) illustrates a model-based strategy. It uses an environment
model consisting of a state-transition model and a reward model. The state-transition
model is shown as a decision tree, and the reward model associates the distinctive features
of the goal boxes with the rewards to be found in each. (The rewards associated with
states S1, So, and S3 are also part of the reward model, but here they are zero and are
not shown.) A model-based agent can decide which way to turn at each state by using
the model to simulate sequences of action choices to find a path yielding the highest
return. In this case the return is the reward obtained from the outcome at the end of
the path. Here, with a sufficiently accurate model, the rat would select L. and then R to
obtain reward of 4. Comparing the predicted returns of simulated paths is a simple form
of planning, which can be done in a variety of ways as discussed in Chapter 8.

When the environment of a model-free agent changes the way it reacts to the agent’s
actions, the agent has to acquire new experience in the changed environment during
which it can update its policy and/or value function. In the model-free strategy shown
in Figure 14.5 (lower left), for example, if one of the goal boxes were to somehow shift
to delivering a different reward, the rat would have to traverse the maze, possibly many
times, to experience the new reward upon reaching that goal box, all the while updating
either its policy or its action-value function (or both) based on this experience. The key
point is that for a model-free agent to change the action its policy specifies for a state, or
to change an action value associated with a state, it has to move to that state, act from
it, possibly many times, and experience the consequences of its actions.

A model-based agent can accommodate changes in its environment without this kind
of ‘personal experience’ with the states and actions affected by the change. A change in
its model automatically (through planning) changes its policy. Planning can determine
the consequences of changes in the environment that have never been linked together in
the agent’s own experience. For example, again referring to the maze task of Figure 14.5,
imagine that a rat with a previously learned transition and reward model is placed directly
in the goal box to the right of S, to find that the reward available there now has value 1
instead of 4. The rat’s reward model will change even though the action choices required
to find that goal box in the maze were not involved. The planning process will bring
knowledge of the new reward to bear on maze running without the need for additional
experience in the maze; in this case changing the policy to right turns at both S; and Ss
to obtain a return of 3.

Exactly this logic is the basis of outcome-devaluation experiments with animals. Results
from these experiments provide insight into whether an animal has learned a habit or if
its behavior is under goal-directed control. Outcome-devaluation experiments are like
latent-learning experiments in that the reward changes from one stage to the next. After
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an initial rewarded stage of learning, the reward value of an outcome is changed, including
being shifted to zero or even to a negative value.

An early important experiment of this type was conducted by Adams and Dickinson
(1981). They trained rats via instrumental conditioning until the rats energetically pressed
a lever for sucrose pellets in a training chamber. The rats were then placed in the same
chamber with the lever retracted and allowed non-contingent food, meaning that pellets
were made available to them independently of their actions. After 15-minutes of this
free-access to the pellets, rats in one group were injected with the nausea-inducing poison
lithium chloride. This was repeated for three sessions, in the last of which none of the
injected rats consumed any of the non-contingent pellets, indicating that the reward
value of the pellets had been decreased—the pellets had been devalued. In the next stage
taking place a day later, the rats were again placed in the chamber and given a session of
extinction training, meaning that the response lever was back in place but disconnected
from the pellet dispenser so that pressing it did not release pellets. The question was
whether the rats that had the reward value of the pellets decreased would lever-press
less than rats that did not have the reward value of the pellets decreased, even without
experiencing the devalued reward as a result of lever-pressing. It turned out that the
injected rats had significantly lower response rates than the non-injected rats right from
the start of the extinction trials.

Adams and Dickinson concluded that the injected rats associated lever pressing with
consequent nausea by means of a cognitive map linking lever pressing to pellets, and
pellets to nausea. Hence, in the extinction trials, the rats “knew” that the consequences
of pressing the lever would be something they did not want, and so they reduced their
lever-pressing right from the start. The important point is that they reduced lever-pressing
without ever having experienced lever-pressing directly followed by being sick: no lever
was present when they were made sick. They seemed able to combine knowledge of the
outcome of a behavioral choice (pressing the lever will be followed by getting a pellet)
with the reward value of the outcome (pellets are to be avoided) and hence could alter
their behavior accordingly. Not every psychologist agrees with this “cognitive” account
of this kind of experiment, and it is not the only possible way to explain these results,
but the model-based planning explanation is widely accepted.

Nothing prevents an agent from using both model-free and model-based algorithms, and
there are good reasons for using both. We know from our own experience that with enough
repetition, goal-d